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Nobel Prizes for Research
with X-Rays

1901 W. C. Rontgen in Physics for the discovery of x-rays.
1914 M. von Laue in Physics for x-ray diffraction from crystals. €
1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determination.
1917 C. G. Barkla in Physics for characteristic radiation of elements.
1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy.
1927 A. H. Compton in Physics for scattering of x-rays by electrons.
1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases.
1962 M. Perutz and J. Kendrew in Chemistry for the structure of hemoglobin.
1962 J. Watson, M. Wilkins, and F. Crick in Medicine for the structure of DNA.
1979 A. McLeod Cormack and G. Newbold Hounsfield in Medicine for computed axial
tomography.
1981 K. M. Siegbahn in Physics for high resolution electron spectroscopy.
1985 H. Hauptman and J. Karle in Chemistry for direct methods to determine
x-ray structures.
1988 J. Deisenhofer, R. Huber, and H. Michel in Chemistry for the structures
of proteins that are crucial to photosynthesis.




Some Neutron History

1932 — Chadwick discovers the neutron
1934 — thermalisation (Fermi)

1936 — scattering theory (Breit, Wigner)
1936 — wave interference (Mitchell, Powers)

1939 — fission /

1945 — diffraction (Shull, Wollan), reflection, refraction
1948 — coherent & incoherent scattering (Shull, Wollan)
1948 — spallation

1949 — structure of AFM (Shull)

1951 — polarized neutrons (Shull & Wollan)

1955 — three axis spectrometer (Brockhouse)

1958 — rotons in helium (Palevsky, Otnes, Larsson)
1962 — Kohn anomalies

1960 — 79 — soft phonons & structural phase transitions
1969 — 79 — scaling and universality

1972 — conformation of polymers

1994 — Nobel Prize for Shull and Brockhouse
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The 1994 Nobel Prize in Physics — Shull & Brockhouse

Neutrons show where the atoms are....

When the neutrons

collide with atoms in the

sample material, they \ry

change dlrm:".'lun {are

scattered) = elastic ﬂ Research reactor

scatt ering. Q ij A.Inm:l ﬁ

cry stalline :lmpl

= | ...and what the atoms do.

J-axis spectrometer with .-‘-I

' . . Crystal that sorts and rot atable crystals and ,JD
Detectors record the directions forwards neutrons of rot atable sample 4 ¥ o
of the newtrons and a diffraction a certain wavelength rp—i_h )
pattern is obtained. {energy) = mono- = ,D Changes inthe
The pattern shows the Airo atizad Aeukron e )}_‘5 .l energy of the

iti i neutrons ara first
B ome aneaan, rome relive g Atomsn % , jf L oeyeediman
) ' crystalline sa’mpla\(;’-a,. R - analyser crystal...

When the nuutruns

penet rate the sampla

they start or camceal

oscillations in tha

atoms. If the neutrons

create phomons or

magnons they

themsalves losa the and the neutrons

! = anargy these absorh then counted in a
3-axis spectrometer = inelastic scattering detector.

Crystal that sorts and
forwards newtrons of
a cartain wavelength
{energy) = mono-
chromatized meutrons




Why do Neutron Scattering?

To determine the positions and motions of atoms in condensed matter
— 1994 Nobel Prize to Shull and Brockhouse cited these areas

(see http://www.nobel.se/physics/educational/poster/1994/neutrons.html)

Neutron advantages:

Wavelength comparable with interatomic spacings

Kinetic energy comparable with that of atoms in a solid

Penetrating => bulk properties are measured & sample can be contained

Weak interaction with matter aids interpretation of scattering data

Isotopic sensitivity allows contrast variation

Neutron magnetic moment couples to B => neutron “sees” unpaired electron spins

Neutron Disadvantages

Neutron sources are weak => low signals, need for large samples etc
Some elements (e.g. Cd, B, Gd) absorb strongly
Kinematic restrictions (can’t access all energy & momentum transfers)



Interaction Mechanisms
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* Neutrons interact with atomic nuclei via very short range (~fm) forces.

* Neutrons interact with unpaired electrons via magnetic dipole interaction.
 X-rays interact with electrons via an electromagnetic interaction



Thermal Neutrons, 8 keV X-Rays & Low Energy
Electrons:- Penetration in Matter

Note for neutrons:
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Types of Interaction

* Neutrons interacting with nuclei

— Absorption by nuclei — cross section (i.e. absorption probability) for thermal
neutrons usually ~1/v, resonances at high energy (> keV)

— Coherent scattering — scattering from different nuclei add in phase
— Incoherent scattering — random phases between scattering from different nuclei

* Neutrons interacting with magnetic fields

— Magnetic dipolar interaction — scattering from magnetic field due to unpaired
electrons — coherent

e X-rays interacting with electrons

— Photoelectric absorption — x-rays kicks electron from shell to continuum
» Leads to fluorescent X-ray emission when hole in shell is filled from outer shell
« Goes as 1/E2 but with sharp steps at shell energies when new channel opens

— Thomson scattering — elastic and coherent
— Compton scattering — inelastic and incoherent
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Neutron and X-Ray Scattering:
Structure from Angstroms to Microns!

Nanoscale science and technology presents
extraordinary opportunities
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But in this size range we do not get real-space “pictures” directly



Comparison of Structural Probes

Note that scattering methods
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Neutron & X-ray Scattering Complement
Other Techniques in Length Scale....
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The Neutron has Both Particle-Like and Wave-Like Properties

e Mass: m = 1.675x 1027 kg

e Charge = 0; Spin =14

 Magnetic dipole moment: p, =-1.913

* Nuclear magneton: uy = eh/4mm, = 5.051 x 107 J T

* Velocity (v), kinetic energy (E), wavevector (k), wavelength (1),
temperature (T).

e E=mv%2=kgT = (hk/2r)2/2m.; k = 2 1/A = m_v/(h/2r)

Enerqy (meV) Temp (K) Wavelength (nm)
Cold 0.1-10 1-120 04-3
Thermal 5-100 60 - 1000 0.1-04
Hot 100 - 500 1000-6000 0.04-0.1

A (nm) =395.6 /v (m/s)
E (meV) =0.02072 k? (k in nm™1)



X-Ray also have Wave-Like and Particle-Like Properties

E=ho=hc/A=(/27x)c(2x/A) =#hck = pc

Charge = 0; magnetic moment = 0; spin = 1

E (keV) AMA)
0.8 15.0
8.0 1.5

40.0 0.3

100.0 0.125

Typical interatomic distance in a crystal is 3.5 A
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Brightness & Fluxes for Neutron &
X-Ray Sources

Neutrons
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Why
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radiation ?

4

Intensity !!!

Brilliance of the X-ray beams
{ photons /s f mm= / mra:lzf 0.1% BW )

Diffraction limit @

D
"

T ESRF futur

generation | ESRF (1996)
i)

—ESRF (1994)

2996 ne ration
sources

1**generation
sources
(.

1200 1920 1940 19260 1980 2000
Year




Advantages & Disadvantages of Neutrons

e Advantages <&
— A similar to interatomic spacings
— Penetrates bulk matter
— Strong contrast possible
— Energy similar to that of elementary excitations (phonons, magnons etc)
— Scattering strongly by magnetic fields
— Data interpretation is direct

 Disadvantages ::
— Low brilliance of neutron sources
— Some elements absorb neutrons strongly
— Kinematic restrictions on Q for large energy transfers
— Difficult to study excitations at high (eV) energies
— Provides statistical averages rather than real space pictures



Advantages and Disadvantages of X-Rays

Advantages &
— A similar to interatomic spacings
— High brilliance x-ray sources (coherence, small beams etc)
— No kinematic restrictions (Q and E not coupled)
— No restriction on energy transfer that can be studied

Disadvantages ~
— Strong absorption of low energy photons

— Contrast issues (low contrast for different hydrocarbons, scattering ~ Z?)
— Radiation damage to samples

— Magnetic scattering not always easy to observe



A Typical Scattering Experiment

k0
; — 20
Incident Radiation Q ,
K p Detector

Wavevector =k (or k,)
‘ki ‘ =2l

Energy =E,
Polarization = p,

Scattered Radiation

>
»

Wavevector =k, (or k')

O Energy = E,
Wavevector Transfer,Q =k, —k.

Energy Transfer, AE=hv=hw=E, —E
For x-rays: AE << E, or E. soQ =2k, siné
Polarization, p, = P;

Polarization = p;

Notice that the finite size of the detector and sample imply uncertainty
In the direction of the wavevectors



Cross Sections

Direction

0.¢
ds /

Incident - - s
A \

neutrons | —_— - aXis
Targe[‘///

® = number of incident neutrons per cm? per second
o = total number of neutrons scattered per second / @
do _ number of neutrons scattered per second into dQ

{

dQ ® dQ
d’c_ number of neutrons scattered per second into dQ & dE
dQdE O dQdE

cross section

The effective area presented by a nucleus
to an incident neutron. One unit for cross
section is the barn, as in “can’t hit the side of
a barn!”

o measured in barns:
1 barn = 1024 cm?

Attenuation = exp(-Not)
N = # of atoms/unit volume
t = thickness



Neutron Scattering by a Single (fixed) Nucleus

> <

k

i N

Scattered Circular

Incident « at r=0
Plane Wave e"*

- “
p /,...- r / Wave Tb efkr
/ 3
K a ‘2
- -

X

Scattering Center

» range of nuclear force (~ 1fm)
IS << neutron wavelength so
scattering is “point-like”

* energy of neutron is too small
to change energy of nucleus &
neutron cannot transfer KE to a
fixed nucleus => scattering is
elastic

 we consider only scattering far
from nuclear resonances where
neutron absorption is negligible

If v is the velocity of the neutron (same before and after scattering), the number of neutrons

passing through an area dS per second after scattering is :

V AS|y| = v dSb2r? =v b dO

Since the number of incident neutrons passing through unit areasis: @ = V‘l/jincident‘z =V

do vb*dQ
dQ  ddQ

2 2
b SO Oy = 47D

(note units)




Intrinsic k
Cross Plane o :__.d \{ | Plane & Spherical
: Wave | [/ = Wave
Section / s
VI\V[\V/\ LN\ K\ A\ \V V\V \VI'\V - E
TS *
Scattering Center_—| \\\k____
at ¥ =0 \\*--—— /
2 T 2 eii%’f-f
| e’ — e+ f(Q)
Total Cross Section : 4

-0 (j—(’) - /@

2am

o= [ f(0,¢)| sin9dddg



Intrinsic Cross Section: Neutrons
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Intrinsic Cross Section: (4
X-Rays '

—

- —_

Case (A): E_=FE, """
e
E_(R,t) = x(t—R/c
rad( ) 4JTEOC2R ( )

X

¥(t-R/c) = —ia(a))Emei“’R/c CoSY
m

Erad(RDt) eikR
= -7, o\
. (@) <

m

COSY

of the Electron e & B
(classical electron radius): R

82 X

v, = =2.82x10""m

2

Thomson Scattering Length - ,

-----

47-580mc yv



Single (free) Electron Scattering (cont’d)

Measured intensity (i.e. number of X - ray photons) « energy/sec
Energy per unit area of beam o E*;

Intensity measured in detector | \Erad\szAQ

incident intensity | E.| A
differential cross section — do _ number of xray§ sc_attered per sec in AQ
dQ number of incident xrays* AQ
252
E IR
da Isc . ‘ rad‘ _ r02 COSZ W

2 (1,/AAQ [, [

* Note that this form is for an incident beam polarized along x in
part (A) of the previous viewgraph. If incident beam is polarized
perpendicular to the scattering plane (Case B), cos?y -> 1.

e For an unpolarized beam, averaging -> (1+ cos?y)/2



Intrinsic Cross
Section: X-Rays
do
dQ |,
Resonance
Rayleigh Scattering
Scattering | @ = O,
oC (U4
0 1

o) 2
E (Rt 2 €2
ROl _ 5o ) = LD
[j_g) } % (1+cos’y) 1y au()|
0
2
() =———
W, —wW —1Nw
Thomson cattering
w>>w = do =1, P
dQ /,
Vi
wl‘
2 3 4



Magnetic Scattering of X-Rays

If we include the magnetic field of the x-ray wave and the spin
of the electron we get:

— Terms in cross section that are sensitive to spin and orbital magnetic moments
of the electrons

— Very weak: scattering amplitude for magnetic x-ray scattering divided by the
amplitude for charge scattering = (hv/mc?) ~ 0.01 for 10 keV x-rays

— => Bragg scattering intensity down by ~ 10*

— Magnetic scattering can be much enhanced at resonances i.e. when the x-ray
energy is close to atomic absorption edges.



Adding up Neutrons Scattered by Many Nuclei

At a scattering center located at R the incident waveise'"

— . i K+.R. - b
so the scattered wave at F isy, = > "% | — é ‘ e
r-K;
5 ) 2
. do _ VdS‘Wscat‘ _ dS b_eiIZ'.? 1 ei (Ko—k").R,

Tdo vdO dQ |

ik'.(F-R;)

(using defn. from earlier VG)

If we measure far enough away so that r >> R, we can use dQ2 = dS/r* to get

aQ <~ s 1)
l, i, ]

where the wavevector transfer Q isdefined by Q =k'—k

do o~ .i(k-k)(R-R)|1—Ccos’ 26
For X-rays: —= e
Y540 OZ 2

|

where R are electron positions



Coherent and Incoherent Scattering of Neutrons

The scattering length, b, , depends on the nuclear isotope, spin relative to the
neutron & nuclear eigenstate. For a single nucleus:

b. =(b)+ b, where &b, averages to zero

bb; = (b)” +(b)(Jb, + b;) + Io,b,
but (h) =0 and (b,ob; ) vanishes unless i = |

)~ o =)o
) do <b>2ze_ic§.(ﬁi—ﬁj) N (<b2>—<b>2)N

Coherent Scattering Incoherent Scattering
(scattering depends on the (scattering is uniform in all directions)

direction & magnitude of Q)
Note: N = number of atoms in scattering system



Nuclear Spin Incoherent Scattering

Consider a single isotope with spin |. The spin of the nucleus - neutron

systemcan be (1 +1/2)or (1 =1/2).

The number of states withspin (I +1/2)is2(1 +1/2) +1=21 +2

The number of states withspin (1 —1/2)i1s2(1 -1/2)+1=2I

If the neutrons and the nuclear spins are unpolarized, each spin state has

the same a priori probability.
The frequency of occurence of b™ stateis ™ = (21 + 2)/(41 + 2)
The frequency of occurence of b~ stateis f~ = (21)/(41 + 2)

Thus (b) = ﬁ[(l +#1)b* + Ib] and (b?) = ﬁ[(l +1)(b7)2 + 1(b7)?]



Values of 6., and o,

Nuclide | oo o | Nuclide| o, Cinc
H 1.8 80.2 V 0.02 5.0
°H 5.6 2.0 Fe 11.5 0.4
C 5.6 0.0 Co 1.0 5.2

4.2 0.0 Cu 7.5 0.5
Al 1.5 0.0 S6Ar 24.9 0.0

* Difference between H and D used in experiments with soft matter (contrast variation)

Al used for windows
* VV used for sample containers in diffraction experiments and as calibration for energy
resolution
 Fe and Co have nuclear cross sections similar to the values of their magnetic cross sections
* Find scattering cross sections at the NIST web site at:
http://webster.ncnr.nist.gov/resources/n-lengths/



Coherent Elastic Scattering measures the Structure
Factor S(Q) i.e. correlations of atomic positions

do

0 <b>2 N .S((j) for an assembly of similar atoms where S((j) — ;<Z eié.(ﬁfz,)>
ensemble

I, ]

Now Ze“é'ﬁi = IdF.e“Q'rZ5(F ~R)= de.e“Q'rpN (F) where p, isthe nuclear number density

50 S(Q) = %<Udf’lei(§.rpN (F)‘2>

or S(Q)= % [dr[dr.e T (p, (F)py (7)) = % [dR[dre ™% (p, (F)py (T - R))

e S(Q) =1+ [dR{g(R) - }e "

where | g(R) = Z<5(ﬁ ~R + §0)> isa function of R only.

i=0

g(R) is known as the static pair correlation function. It gives the probability that there is an
atom, i, at distance R from the origin of a coordinate system, given that there is also a
(different) atom at the origin of the coordinate system at the same instant in time.



S(Q) and g(r) for Simple Liquids

* Note that S(Q) and g(r)/p both tend to unity at large values of their arguments
* The peaks in g(r) represent atoms in “coordination shells”

e g(r) is expected to be zero for r < particle diameter — ripples are truncation
errors from Fourier transform of S(Q)

Fig. 5.1 The structure factor S(x) for **Ar at 85 K. The curve through the Fig. 5.2 The pair-distribution function g(r) obtained from the experimental

S - . : e o > 28 by

experimental points is obtained from a molecular dynamics calculation of results in Fig. 5.1. The mean number density is p =2.13X10™ atoms m™".
Verlet based on a Lennard-Jones potential. (After Yarnell et al., 1973.) (After Yarnell e al., 1973.)
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X-ray Scattering from an Atom

We have to add up the Thomson scattering for all electrons
In the atom. q
Q) =-n[p(Ne?dr  fQ->0=2Z; f'(Q>0)=0

fO0 is called the atomic form factor for a free electron

We expect electrons that are more tightly bound to be able
to respond less to the driving field. This will alter the real
part of the scattering length. In addition, we also expect a
forced electron to have a phase lag (c.f. forced oscillator)

f(Q,w)= f°(Q)+ f'(w) +if"(w)

f and f’ are known as dispersion corrections



2 F

Atomic Form Factor: /' (4) = f p(F)e’ dv

"point" atom

f(qg=0)=Z
f'(q—=>2)=0

FI"™\_Ne Mg?* \Si*

Atomic Form Factor with
Dispersion Corrections:

f@.hw) = £°@) + [ (hw) +if" (ho)

0

2 4 6 8 10

q (A7)

12



The Fermi Pseudo-Potential for Neutrons

do _1 1 ZW” . Where the sum is over probabilities of all transitions
aQ chkadQ

where p.. is# of momentumstates in dQ2, per unit energy, for neutrons in state k'

IV(r)e'(k

2
By Fermi's Golden Rule: Y W. . = —pk = —pk

K'indQ

Using standard " box normalization", the volume per k state is (27)° /Y where Y = box volume

21,12 211 1
Final neutron energy is E'= ik — dE'= Rk dik
2m m
p..dE'=number of wavevector states in volume k' *dk'dQ = (2Y X k'?dk'dQ
T
. number of wavevector states Y
ie. p. = . _ k 2d
dE (27)° h
Further, @ = incident flux = density x velocity:Yizk Fermi pseudopotential
m /
do _Ym 12z Y ,.m, m ) e 2 zﬁhz
S0, —=—— k' V(F)e'* ™ ) drl  so| V(F) = bo(F
QK ndQ h @) 7 oyl vk >‘ (ﬂhZJU (") (r)= ()




Use V(r) to Calculate the Refractive Index for Neutrons

2 7th?

The nucleus - neutron potential isgivenby: V(F) = bo(r) forasingle nucleus.

2
So the average potential inside the mediumis: V = 27h o Where p= 1 Zbi
m volume 4

p is called the nuclear|Scattering Length Density (SLD) + used for SANS & reflectometry

21,2
The Kkinetic (and total) energy of neutron in vaccuumis E = hz i
m
21,2 o
Inside the medium the total energy is 5 +V
m
21,2 21,2 21,2 2
Conservation of energy gives Iy Ik Ry K + 27h p or ki-k’=4np
2m 2m 2m m

Since k/k, = n = refractive index (by definition), and p is very small (~ 10° A™) we get :
n=1-1pl2x
Since generally n <1, neutrons are externally reflected from most materials.




Why do we Care about the Refractive Index?

 When the wavevector transfer Q is small, the phase factors
In the cross section do not vary much from nucleus to
nucleus & we can use a continuum approximation

* We can use all of the apparatus of optics to calculate
effects such as:

External reflection from single surfaces (for example from guide surfaces)
External reflection from multilayer stacks (including supermirrors)
Focusing by (normally) concave lenses or Fresnel lenses

The phase change of the neutron wave through a material for applications
such as interferometry or phase radiography

Fresnel edge enhancement in radiography



Refractive Index for x-rays

n=1-o+ip

0
where & = 27 afz Ol¢

and ,B:%

P, 1s the atomic number density; k is the x - ray wavevector
1 1S the absorption coefficient (i.e. intensity decreases as e ““)

inkz

The wave outside the medium is e™**: inside the medium it is e

Note the we can also write:

n=1- _271/);% (10(0)+ f+if "} with = —[271";% } £

2 2
so f"=- K p=- K “o_ | K o, because wu=p,0,
27p, I, 27p, 1, | 2K At



Diffraction

* Neutron (or x-ray) diffraction is used to measure the differential cross
section, do/dQ in the static approximation i.e. integrated over kK’ — measures
G(r,0)

— Crystalline solids (elastic scattering — G(r,0 ))
» Unit cell size; crystal symmetry; atomic arrangement
and thermal motions (ellipsoids)

— Liquids and amorphous materials
— Large scale structures

§

"I

A

* Depending on the scattering angle,
structure on different length scales, d,
IS measured:

271Q=d = 1/2sin(8)

* Forcrystalline solids & liquids, use
wide angle diffraction. For large structures,
e.g. polymers, colloids, micelles, etc.
use small-angle scattering




The Kinematic Approximation

Note that the approximation we have just seen ignores
— Depletion of the incident beam by scattering or absorption
— Multiple scattering

l.e. energy is not conserved

This so-called “kinematic approximation” is OK for weak
scattering, very small crystals or “bad” crystals

It is usually used for interpreting diffraction experiments, though
“extinction corrections” are often needed with single crystals
— If it’s not adequate, use dynamical theory

In addition, we have so-far ignored thermal motion of atoms



Diffraction by a Lattice of Atoms

— 1 —iO(R.-R. . =g - . = . . . ..

S(Q) = N<Ze QR R’)> with R, =1 + U, wherei is the equilibrium position

i j

of atom i1 and U. is any displacement (e.g. thermal) from the equilibrium position.
Ignoring thermal vibrations, S(Q) is only non - zero for Q's such that Q.(i — j) = 2Mx.
In a Bravais lattice, we can write i =m,,d, +m,,a, + m,d, where &,3,,4, are

the primitive translation vectors of the unit cell.

L. 2T . :
Defined, = V—ﬂ a, A d, and cyclic permutations.
0

Then & &, = 276;.

If Q=G,, =ha, +ka, +la, then Q.(i — ) =2Mur.

So scattering from a (frozen) lattice only
occurs when the scattering wavevector, Q,
Is equal to a reciprocal lattice vector, G, .

unit cell

The repeating unit of a crystal.




Direct and Reciprocal Lattices

—

In a Bravais lattice, we can write R, = m;a, + m,;a, + mg;a; where a,,a,,a; are
the primitive translation vectors of the unit cell (see previous viewgraph).

. . L 27Z' = .
Let'sdefinea, =—a, xa,, a, =—asyxa,, dady=—a;xa
V 2 3 2 V 3 1 3 V 1 2
0 0 0
where V, =a,.(a, xd3) =the volumeof the unit cell.

The & have the dimensions of (length)™ and the property that &;.d; = 275y, i.e. & is

perpendicular to the plane defined by a, and a; etc.

If we choose a vector Gy defined by Gy = hd; +kd; +1d; then Gpy.(R; —R;) =2Mr.

i.e. Gy, is normal to sets of planes of atoms spaced 27 / G, apart

Scattering from a lattice of atoms occurs only when Q = Gy

The vectors G,,, define a lattice of points called the |reciprocal lattice

Homework: verify that Bragg’s (A = 2 d sin6) follows from the above



2D

2m/a
—@ @ o ® o
a’*
I 2m/a
a,”
a’*
Reciprocal
a,*

al* 21 _
cos(30%) a

Reciprocal
Lattice:

V.=a,(a,xa,)

C

a, = 7612 X A,
C

e 27 .
C

e 20 . L



Reciprocal Space — An Array of Points (hkl)
that is Precisely Related to the Crystal Lattice

Gy = 21t/dyy (hk1)=(260)

a* = 2n(b x ¢)/V,, etc.

A single crystal has to be aligned precisely to record Bragg scattering



Notation
éhkl is called a reciprocal lattice vector (node denoted hkl)
h, k and | are called Miller indices

(hkl) describes a set of planes perpendicular to thl’
separated by 27/G,

{hkl} represents a set of symmetry-related lattice planes
[hkl] describes a crystallographic direction

<hkl> describes a set of symmetry equivalent crystallographic
directions



For Periodic Arrays of Nuclei, Coherent Scattering Is Reinforced Only in
Specific Directions Corresponding to the Bragg Condition:

Q Reflected Beam

Incident Beam

Incident
Plane Wave
Diffracted
Plane Wave

Scattering Plane 1

Scattering Plane 2 L Scattering Plane 2



Atomic Vibrations

The formalism on the previous slide works fine if the atoms are stationary:
in reality, they are not

=1 -iQ.(R;-R;
Remember that S(Q)—N<Ze 2 )>
ensemble

i, ]

We average over the (fluctuating) atomic positions by introducing a
probability that an atom will be at given position. Instead of the Fourier
Transform of 6 functions, this gives the FT of the 6 functions convolved
with a spread function. The result is that S(Q) is multiplied by the FT of the
spread function i.e. by exp—Q2<u2>/3 if we use a Gaussian spread function

Ll o h —ANARAAND

Atomic vibrations cause a decrease in the intensity of Bragg scattering.
The “missing” scattering appears between Bragg peaks and results in
inelastic scattering



Diffraction from non-Bravais Crystals

- Brag's Law:
mA =2d s

Frrya (@) = (2 fi(@e"” ] ~ (i e )

Unit Cell Structure Factor Lattice Sum
—>
F..(q)




Key Points about Diffraction

A monochromatic (single 1) neutron beam is diffracted by a single crystal
only if specific geometrical conditions are fulfilled

These conditions can be expressed in several ways:
— Laue’sconditions: Q& =h; Qd&,=k; Qd;=I with h, k, and | as integers
— Bragg’s Law:2d,, sin8 = 4
— Ewald’s construction

see http://www.matter.org.uk/diffraction/geometry/default.htm

Diffraction tells us about:

_ _ ] Incident
— The dimensions of the unit cell neutrons
— The symmetry of the crystal
— The positions of atoms within the unit cell Ewald Sphere

— The extent of thermal vibrations of atoms
in various directions
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Bragg Scattering from Crystals

Working through the math (see, for example, Squires' book), we find :

do _\ @r) 3 _ G 5
(d_QjBragg N %0 CulfFu@)

where the unit - cell structure factor is given by
F (Q) = ZBdeiQ'de_Wd
d

and W, is the Debye - Waller factor that accounts for thermal motions of atoms

* Using either single crystals or powders, neutron diffraction can be used to
measure F2 (which is proportional to the intensity of a Bragg peak) for
various values of (hkl).

* Direct Fourier inversion of diffraction data to yield crystal structures is not
possible because we only measure the magnitude of F, and not its phase =>
models must be fit to the data

* Neutron powder diffraction has been particularly successful at determining
structures of new materials, e.g. high T_materials




Comparison of X-ray and Neutron Cross
Section for Crystal Diffraction

do (27)° = = <\ 2
— =N 0(Q-G,,)IF
(deNeutron VO thI: (Q hkl)‘ “ (Q)‘
where the unit - cell structure factor is given by
Fhk| (@) _ Z b_dei(j.ae—Wd
d

and W, is the Debye - Waller factor that accounts for thermal motions of atoms

do o[ 1+cos’20 | (2x)° . - .2
(dgl)xray_ro{ 2 }N V, hZH:a(Q_thl)‘Fhkl(Q)‘

where the unit - cell structure factor is given by

Fo (@) = Z fs ((51 a))eié'ae_wd



The Structure Factor

The intensity of scattering at reciprocal lattice points is given by the

square of the structure factor Fyq(Q) =) b eiQdg W,
d

Crystallography attempts to deduce atomic positions and thermal
motions from measurements of a large number of such “reflections”

— (Reciprocal) distance between diffraction “spots” => size of unit cell

— Systematic absences and symmetry of reciprocal lattices => crystal
symmetry (e.g. bcc h+k+I=2n)

— Intensities of “spots” => atomic positions

and thermal motions

Laue diffraction pattern
showing crystal symmetry



Resolution and Integrated Intensity

* Neutron beam is not perfectly collimated
or monochromatic

e At a CW source, measure intensities of
Bragg peaks either by rocking the crystal

through the Ewald sphere or scanning 26.
— Width of rocking curve reflects instrumental
resolution and (perhaps) crystallite size

* Integrated intensity of rocking curve is
proportional to structure factor.
Constant of proportionality depends on
resolution function and scan direction
— called the Lorentz factor

Ewald Sphere




Useful Web Sites

* The following sites provide tutorials on diffraction. It is a
good idea to go through them and try the examples.

e http://www.matter.org.uk/diffraction/introduction/default.htm

e http://www.uni-
wuerzburg.de/mineralogie/crystal/teaching/teaching.html



(a) (b)

If we could measure
the complex quantity
F.., we could figure
out the positions of all
atoms. But we only
measure | Fpy |° . In
fact, we would be
better off if diffraction
measured phase of
scattering rather than
amplitude!
Unfortunately, nature
did not oblige us.

(c) (d)

The Phase Problem N i

A graphic illustration of the phase problem: (a) and (b) are the
original images. (c) is the (Fourier) reconstruction which has the Fourier
phases of (a) and Fourier amplitudes of (b); (d) is the reconstruction with
the phases of (b) and the amplitudes of (a)-

Picture by courtesy of D. Sivia



Powder — A Polycrystalline Mass

All orientations of
crystallites possible

Typical Sample: 1cc powder of
10um crystallites - 10° particles

If 1um crystallites - 10%? particles

Single crystal reciprocal lattice
- smeared into spherical shells



Powder Diffraction gives Scattering on

Debye-Scherrer Cones
(220)

Incident beam
X-rays or neutrons

(200)

Bragg’s Law A =2dsin®
Powder pattern — scan 20 or A



Typical SANS/SAXS Applications

e Biology
— Organization of biomolecular complexes in solution

— Conformation changes affecting function of proteins, enzymes, protein/DNA
complexes, membranes etc

— Mechanisms and pathways for protein folding and DNA supercoiling

 Polymers
— Conformation of polymer molecules in solution and in the bulk
— Structure of microphase separated block copolymers
— Factors affecting miscibility of polymer blends

e Chemistry

— Structure and interactions in colloid suspensions, microemeulsions,
surfactant phases etc

— Mechanisms of molecular self-assembly in solutions



Biological Applications of SANS

e Studying Biological Macromolecules in Solution
— Proteins
— Nucleic Acids
— Protein-nucleic acid complexes
— Multi-subunit protein complexes
— Membranes and membrane components
— Protein-lipid complexes

* One of the issues with studying bio-molecules is that most
contain H which gives a large, constant background of
iIncoherent scattering. To avoid this:

— Use D,0 instead of water as a fluid for suspension
— May need to deuterate some molecular components



Instrumental Resolution for SANS/SAXS

2 2 5 )
Q=4—”sine — ﬁé _ 5i2 N cos_ 92.59
A Q A sin“ @

2 2

For SANS, (64/4) s ~ 5% and & 1s small, so <§ >=O.0025+<59 >

QZ QZ
For equal source - sample & sample - detector distances of L and equal

apertures at source and sample of h, 66, = J5/12hiL.

The smallest value of @ is determined by the direct beamsize: 26,,;, ~1.5h/L
At this value of 4, angular resolution dominates and

Rms ~ (60ms! Onmin )Qmin ~ 0Omsdm I A ~ (21 A)h/L

The largest observable object is ~ 272/0Q s ~ AL/h.

This achievesa maximum of about 5 #m at the ILL 40 m SANS instrument using
15 A neutrons.

Note that at the largest values of &, set by the detector size and distance from the
sample, wavelength resolution dominates.



d . _iOF .
Remember d—g=b30h<Udr.e e (F)

Scattering Length Density

)

What happens if Q is very small?
— The phase factor will not change significantly between neighboring atoms
— We can average the nuclear scattering potential over length scales ~27/10Q
— This average is called the scattering length density and denoted ,(r)

How do we calculate the SLD?
— Easiest method: go to www.ncnr.nist.gov/resources/sldcalc.html

By hand: let us calculate the scattering length density for quartz — SiO,

Density is 2.66 gm.cm3; Molecular weight is 60.08 gm. mole!

Number of molecules per A3 = N = 1024(2.66/60.08)*N,,qa4r0 = 0.0267 molecules per A
SLD=2b/volume = N(bg; + 2b,) = 0.0267(4.15 + 11.6) 10° A2 = 4.21 x106 A2

A uniform SLD causes scattering only at Q=0; variations in the SLD cause
scattering at finite values of Q



SLD Calculation

e www.ncnr.nist.gov/resources/sldcalc.html
* Need to know chemical formula
and density

— * Compound

Enter

— Density (g/fcmn3)

Not relevant for SLD ———— Wavelength (A)

Neutron SLD

— Cu Ka SLD

X-ray values

—— > Mo Ka 5LD

B&Ckground — 5 Neutron Inc. X5
Neutron Abs. XS

Determine best sample thickness

MNeutron 1 /e length

CeH12
0.86

6

-3.07E-7 (AA=2)
8.34E-6 +9.36E-9i (AA-,
8.33E-6 +2.08E-9i (Ar-,
5.93; 33.4 (cmr-1)
0.0823 (cmA-1)

0.166 (cm)

Note units of the cross section — this is cross section per unit volume of sample



SANS Measures Particle Shapes and Inter-particle Correlations

3—g=<b>2 [ d%r Jdorng (P)ny (7)™
space space
2

= [ d°R [dR'(n,(R)n, (R"))e >

space space

(p=po) [dxe®

particle

orientation

dO' = |2 = i*”
15 = (P~ P [FQ) VN, [d'RG,(R).e"

where G, is the particle - particle correlation function (the probability that there

isa particle at R if there's one at the origin) and ‘F(C))‘2 IS the particle form factor :

2
‘F(Q)‘Z =\% jd3x.e“5'X
p

particle

orientation

These expressions are the same as those for nuclear scattering except for the addition
of a form factor that arises because the scattering is no longer from point-like particles



Scattering from Independent Particles

1l do
Scattered intensity per unit volume of sample = | = F)erdr
yp ple = 1(Q) = 52 = [ p(rrerar]

For identical particles

2
. P Malrix .
I (Q) — _(pp p0)2V2<V jelQ rdr > ]' s scattering density
p particle

/ &\ homogeneous particle O
with scattering density, Pp

contrast factor

particle form factor [F@f

Note that  1(0) = g(pp )V
Particle concentration ¢= NV /V and particle molecular weight M, = oV N,

where p is the particle mass density and N ,is Avagadro's number

so 1(0)= M, (0, — p,)° provides a way to find the particle molecular weight

A



Scattering for Spherical Particles

2

The particle form factor ‘F ((3)‘2 = IS determined by the particle shape.

J.di—;eléf
V

For a sphere of radius R, F(Q) only depends on the magnitude of Q :

i,(QR) -V, atQ=0

E Q)= {sin QR—QRCOSQR} _ 3,
sphere 0 (QR)3 - QR

Thus, as Q — 0, the total scattering from an assembly of uncorrelated spherical
particles[i.e. when G(r) — o(7)]is proportional to the square of the particle volume
times the number of particles.

For elliptical particles
replaceR by :

R — (a®sin®$+Db? cos® 9)"'?
where 4 is the angle between

the major axis (a) and Q




Radius of Gyration Is the Particle “Size” Usually
Deduced From SANS Measurements

If we measure r from the centroid of the particle and expand the exponential
In the definition of the form factor at small Q :

F(Q)= jdf AV, +M——f(@ F)2dr ..

2
o Icos @sin H.dev_‘-r d°r o i
=V,|1-=—2— - e +.. =V, | 1- 69 +..|=Ve 8
jsiné’.d@ VJ- '

where r is the radius of gyrationis r, = I R°d 3r/fd °r. Itis usually obtained from a fit

2

to SANS data at low Q (in the so - called Guinier region) or by plotting In(Intensity) v Q°.
The slope of the data at the lowest values of Q is rg2/3. It is easily verified that the
expression for the form factor of a sphere is a special case of this general result.



Shape Determination for Dilute, Randomly
Oriented, Uniform Particles

I(Q)__(pp :00

o
D

1@ =1-(pp - 70) < el ”d(rr')vp> (Py po)2< | y(ﬁ)e'@ﬁdﬁ>
Ve Ve orientation

D i
i sinQr

Q) =(py = po)4z [Py (n =g =

0

where P(r) = 421y (r) is the probability of finding two points in the particle separated by r

If [(Q) is measured over a wide enough Q range then the inverse
transform can be computed

P(r) = 4ar%(r) == [ QUQsin(@r)dQ
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Determining Particle Size From Dilute Suspensions

Particle size is usually deduced from dilute suspensions in which inter-particle
correlations are absent

In practice, instrumental resolution (finite beam coherence) will smear out
minima in the form factor

This effect can be accounted for if the spheres are mono-disperse

For poly-disperse particles, maximum entropy techniques have been used
successfully to obtain the distribution of particles sizes

5 i S =
o EXPERIMENT SMEARED BY INSTRUMENTAL
RESOLUTION

MEARED CURVE
a :o“lLO( e DES C

0 0.0t 0.02 0.03

4
Q= —Esin 6 1A "]
A

Fig. 4. Plot of In I(Q) vs Q for 3-98 vol.% mono_disperse PMMA-H
spheres (core C1) in D,O/H,0O mixtures.



Correlations Can Be Measured in Concentrated Systems

A series of experiments in the late 1980’s by Hayter et al and Chen et al
produced accurate measurements of S(Q) for colloidal and micellar systems

To a large extent these data could be fit by S(Q) calculated from the mean
spherical model using a Yukawa potential to yield surface charge and screening
length

1.6 2.0
T
‘é o
: [9)
“w
E 08 1.0
0
I~
=)
~
o
e 0.0

0.0 1.0 20
Q/nm™

Fig. 2. Observed (@) and calculated ( ) scattered inten-
sity I1(Q) as a function of momentum transfer Q for a charged
micellar  dispersion: 003 moldm~™3  hexadecyltrimethyl-
ammonium chloride in D,0O at 313 K. The functions P(Q) and
S(Q) are discussed in the text. (1 barn sterad ™ '=10"2% M?
sterad ™).
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Contrast & Contrast Matching
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* Chart courtesy of Rex Hjelm
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Both tubes contain borosilicate beads +
pyrex fibers + solvent. (A) solvent
refractive index matched to pyrex;. (B)
solvent index different from both beads
and fibers — scattering from fibers
dominates
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|Isotopic Contrast for Neutrons

Hydrogen  Scattering Length Nickel Scattering Lengths
Isotope b (fm) Isotope b (fm)
'H -3.7409 (11) S8 N(j 15.0 (5)
D 6.674 (6) INT 2.8 (1)
T 4.792 (27
@) *INi 7.60 (6)
°“Ni -8.7 (2)

“Ni -0.38 (7)




Using Contrast Variation to Study Compound Particles

Examples include nucleosomes

LQ=(pi-pr) Fi (protein/DNA) and ribosomes
(poteins/RNA)
2
- 1Q) =—{ |Ap, [T dF, +Ap, €7 dF
Iz(Q)=(,Oz —pl) F3 < ,01\./[ 1 Pz\{ 2 >
1@ = 802 (R Q) )+ 02 (FoQF ) +
in(QRy,)
o0, |F Q)F Q)22
la(Q)—HliQ} 7 ﬂs.) 1@ e 2 QRez

=2(2 — po) (P2 - Pa) FiF, Sﬁéﬁﬁ)‘
N I: )

=0 atQ=7/R,,

Viewgraph from Charles Glink



Porod Scattering

Let us examine the behavior of \F(Q)\2 (QR)" at large values of Q for a spherical
particle (i.e. Q >>1/R where R is the sphere radius)

SinQR —QR.cosQR
—>9V?*cos°QRasQ — x
=9V */ 2 on average (the oscillations will be smeared out by resolution)

9V * _ 27A
2(QR)*  Q°

i s o2l SINQR
}(QR) =9V { OR

—C0S QR}

Thus \F(Q)\2 — where A is the area of the sphere's surface.

This is Porod's law and holds as Q — o for any particle shape provided the particle
surface is smooth.

Another way to obtain it is to expand G(r) = 1-ar + br* +..[with a = A/(2zV)]at small r
and to evaluate the form factor with this (Debye) form for the correlation function.



Scattering From Fractal Systems

* Fractals are systems that are “self-similar’ under a change of scale l.e. R -> CR

* For a mass fractal the number of particles within a sphere of radius R is
proportional to RP where D is the fractal dimension

Thus
47zR*dR.G(R) = number of particles between distance R and R + dR =cR"”'dR
.. G(R)=(c/4n)R"®

and $(Q) = [dRe“*G(R) = %” [dRR.sinQR (c/47)R"

const
6-D,

For a surface fractal, one can prove that S(Q) o which reduces to the Porod

form for smooth surfaces of dimension 2.



In(1)

Typical Intensity Plot for SANS From Disordered

Systems

Zero Q intercept - gives particle volume if

t / concentration is known

-~ Guinier region (slope = -r,%/3 gives particle “size™)

_—— Mass fractal dimension (slope = -D)

\ - -
Porod region - gives surface area and
surface fractal dimension

{slope = -(6-D,)}

In(Q)



Surface Reflection Is Very Different From
Most Neutron and X-ray Scattering

We worked out the cross section by adding scattering from
different scattering centers
— We ignored double scattering processes because these are usually very weak

This approximation is called the Born Approximation

Below an angle of incidence called the critical angle, neutrons
and x-rays are perfectly reflected from a smooth surface

— This i1s NOT weak scattering and the Born Approximation is not applicable to

this case

Specular reflection is used:

— In neutron guides and x-ray mirrors

— In multilayer monochromators and neutron polarizers

— To probe surface and interface structure in layered systems



Various forms of small (glancing) angle neutron reflection

‘ Q=Q, ~1nm!

Specular reflectometry
Depth profiles
(nuclear and/or magnetic)

Off-specular (diffuse) scattering
In-plane correlated roughness

Magnetic stripes

Phase separation (polymers)

Glancing incidence diffraction
Ordering in liquid crystals

Atomic structures near surfaces
Interactions among nanodots

A~0.1-100nm Viewgraph from M. R. Fitzsimmons



Only Neutrons With Very Low Velocities
Perpendicular to a Surface Are Reflected

k/k,=n
The surface cannot change the neutron velocity parallel to the surface so:
k,cosa =kcosa'=k,ncosa’ 1.e n=cosalcosa'

Neutrons obey Snell's Law

Since k’=k;—4rzp k*(cos’ a'+sin®a') = kZ(cos® a +sin® a) — 4mp
i.e. kisin“a'=k’sina-4zp or k’=kZ —4np

The critical value of k,, for total external reflectionis k;, = M
For quartz k™" =2.05x10~° A™

2zl A)sina =

critical kO
e (O) = 0.024( A) for quartz \

Note: a_.., (") =0.11(A) for nickel \
K

How do we make a neutron bottle?

_ kcritical
0z




Reflection of Neutrons by a Smooth Surface: Fresnel's Law

br = apetKrT ikp-r

2 YR = agre

continuity
of y &yatz=0=
a, +a;=a, (1)

a,k, +azk; =a;k;

components perpendicular and parallel to the surface:
a,kcosa +azkcosa =a, nkcosa’ (2)
—(a, —ag)ksina =—a;nksina’ (3)
(1) & (2) =>Snell'sLaw: |cosa =ncosa’
(&, —ag) _ ] sing’ N sina’ _ ky,

(a, +a;) sinae sina K,

so reflectanceisgivenby | r=a,/a, =(k, —k,)/(k,, +K,)

(1) & (3) =>




What do the Amplitudes ay and a; Look Like?

* For reflection from a flat substrate, both ag and a; are complex when k, < 4np
|.e. below the critical edge. For a, =1, we find:

0.5

—

W

Real (red) & imaginary (green) parts of ag
plotted against k,. The modulus of a is

plotted in blue. The critical edge is at

K, ~ 0.009 A". Note that the reflected wave is

0.0 0.0 005 O0® 005
05

15

0.5

-0.5

completely out of phase with the incident wave

atk,=0

0.0 0.01 0.015 0.2 0.05

Real (red) and imaginary (green) parts
of a;. The modulus of a; is plotted in
blue. Note that a; tends to unity at
large values of k, as one would expect
and that the transmitted intensity peaks
at the critical edge.



Penetration Depth

In the absence of absorption, the penetration depth becomes infinite at large
enough angles

Because k, is imaginary below the critical edge (recall that kz2 = kgz —47p),
the transmitted wave is evanescent

The penetration depth A =1/1m(k) T

1045_ A= "> 3

Around the critical edge, one may

tune the penetration depth to probe <"
different depths in the sample 107 J .
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Measured Reflectivity

* We do not measure the reflectance, r, but the reflectivity, R given by:

R = # of neutrons reflected at Qz =r.r* o
TaTa) Braslau et al. ;
# of incident neutrons . PRL 54 114 (1905) |

l.e., just as in diffraction, we lose phase
information

3

1 -Ray Reflectivity

* Notice, also, that the measurement averages
the reflectivity over the surface of the sample: |
i.e. measured reflectivity depends on o o . 030 o4

p(2) =< [ox[dyp(x,y.2)

Measurement

Measured and Fresnel reflectivities
for water — difference is due to surface
roughness



When Does a “Rough” Surface Scatter Diffusely?

N

N/, :

* Rayleigh criterion

path difference:  Ar =2 h siny
phase difference: A¢ = (4wh/A) siny
boundary between rough and smooth: A¢ = n/2

that is h <A/(8siny) for asmooth surface

g0 (<l g2/ gl

whereg=4znhsiny/A=Q,h




Surface Roughness

e Surface roughness causes diffuse —Z /
(non-specular) scattering and so =0 L1 P2
reduces the magnitude of the
specular reflectivity |

* The way in which the specular reflection is damped depends on the length
scale of the roughness in the surface as well as on the magnitude and
distribution of roughness

Note that roughness

&JDH Fjp—:» “ J,
\ n(Z introduces a SLD
WNW 1\W profile averaged over

the sample surface

“sparkling sea”’model  each piece of surface 2k, k!
.- specular from many  scatters indepedently > R=R e "™
facets -- Nevot Croce model




Fresnel’s Law for a Thin Film

r=(ko,-K1,)/ (K1, +Ko,) is Fresnel’s law

Evaluate with p=4.10% A2 gives the
red curve with critical wavevector
given by k,, = (4np)?2

If we add a thin layer on top of the
substrate we get interference fringes &
the reflectance is given by:

i 2k, t
Iy T 1,6 !

1+ ry,1,e

i 2K, t

and we measure the reflectivity R = r.r*

If the film has a higher scattering length density than the substrate we get the green
curve (if the film scattering is weaker than the substance, the green curve is below
the red one)

The fringe spacing at large k,, is ~ n/t (a 250 A film was used for the figure)



Multiple Layers — Parratt Iteration (1954)

* The same method of matching wavefunctions and derivatives at
interfaces can be used to obtain an expression for the reflectivity of
multiple layers

ZJ+1ZJ
x_:i:emkzjj jj+l+X
J T. 2|kZ,J+1zj
j 141 X
h kZ,j _kZ,j+l vacuum 1
Werer”+1 k.
Z,] z,]+1

Start iteration with .
Ryys=Xy,=0and T, =1 layer  j
(i.e. nothing coming back from inside

substrate & unit amplitude incident wave)

layer N

layer N+1

Image from M. Tolan



Dealing with Complex Density Profiles

Any SLD depth profile can be
“chopped” into slices

The Parratt formalism allows the
reflectivity to be calculated

A thickness resolution of 1 A is
adequate — this corresponds to a
value of Q, where the reflectivity
has dropped below what
neutrons can normally measure

Computationally intensive!!

Slicing of Density Profile
J

i Y\
. v !

— i
HM“ /‘l ‘.\ jf

-
_ N/

T

\

e

Image from M. Tolan



Kinematic (Born) Approximation

We defined the scattering cross section in terms of an incident plane wave & a
weakly scattered spherical wave (called the Born Approximation)

This picture is not correct for surface reflection, except at large values of Q,

For large Q,, one may use the definition of the scattering cross section to
calculate R for a flat surface (in the Born Approximation) as follows:

number of neutrons reflected by a sample of size L, L,
~ number of neutrons incident on sample (= OL,L sinx)

_ o _ 1 jdeQ: 1 J-dg dk,dk,
L,L,sina Ll sing’dQ L,L,sina? dQ kg sina

becausek, =k,cosa so dk, =-k,sina dea.

From the definition of a cross section we get for a smooth substrate :

d An”
d_g *2Z_L,L,5(Q,)5(Q,) so R=167%p? Q!

= p* [ dr [dre®" = p

It is easy toshow that this is the same as the Fresnel form at large Q,



Reflection by a Graded Interface

Repeating the bottom line of the previous viewgraph but keeping the z - dependence

2 _ 2 2 _ 2
1672 IP(Z)e'QZZdz = 1672 J.dp(z) e'?dz
Q: Q, dz

equality follows after intergrating by parts.

of pgives: R= where the second

If we replace the prefactor by the Fresnel reflectivity R -, we get the right answer
for a smooth interface, as well as the correct form at large Q,

2
dz

This can be solved analytically for several convenient forms of do/dz such

as1/cosh?(z). This approximate equation illustrates an important point :
reflectivity data cannot be inverted uniquely to obtain p(z), because
we generally lack important phase information. This means that models
refined to fit reflectivity data must have good physical justification.



Comparison of Neutron and X-Ray Reflectivity
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Neutrons often provide better contrast and don’t damage samples
X-rays provide better Q resolution and higher Q values

Viewgraph courtesy of M. Tolan



The Goal of Reflectivity Measurements Is to Infer a
Density Profile Perpendicular to a Flat Interface

In general the results are not unique, but independent
knowledge of the system often makes them very reliable

Frequently, layer models are used to fit the data

Advantages of neutrons include:
— Contrast variation (using H and D, for example)
— Low absorption — probe buried interfaces, solid/liquid interfaces etc
— Non-destructive
— Sensitive to magnetism
— Thickness length scale 10 — 5000 A

Issues include
— Generally no unique solution for the SLD profile (use prior knowledge)
— Large samples (~10 cm?) with good scattering contrast are needed



Neutrons can also gain or lose energy in the scattering process: this is
called inelastic scattering

(a) Elastic Scattering (k'= k) {@,\‘9 -
L
" Q
Incident 1

. Ql2
sin @ = e

Q = 2ksin g = 22508
inelastic scattering

Scattering in which exchange of energy and
momentum between the incident neutron and
the sample causes both the direction and the
magnitude of the neutron’s wave vector to

change.

Neutron Loses Energy Neutron Gains Energy
(k'< k) (k'>k)




The Elastic & Inelastic Scattering Cross
Sections Have an Intuitive Similarity

* The intensity of elastic, coherent neutron scattering is proportional to the
spatial Fourier Transform of the Pair Correlation Function, G(r) l.e. the
probability of finding a particle at position r if there is simultaneously a
particle at r=0

* The intensity of inelastic coherent neutron scattering is proportional to
the space and time Fourier Transforms of the time-dependent pair
correlation function function, G(r,t) = probability of finding a particle at
position r at time t when there is a particle at r=0 and {=0.

* For inelastic incoherent scattering, the intensity is proportional to the
space and time Fourier Transforms of the self-correlation function, G(r,t)
|.e. the probability of finding a particle at position r at time t when the
same particle was at r=0 at t=0




Diffraction from a Frozen Wave

2
k

We know that for a linear chain of “atoms” along the x axis, S(Q,) is just a series
of delta function reciprocal lattice planes at Q, = n2n/a, where a is the

separation of atoms

= 1
Recall that S(Q):ﬁ @ ’ ’ o—0—0—0

a

What happens if we put a"frozen" wave in the chain of atoms so that the

atomic positions are x,, = pa+ucoskpa where pisan integer and u is small?
2 2

S(Q) _ ZeiQpaeiQucoskpa ~ ZeiQpa (1_|_ iQu[eikpa _|_e—ikpa])
p p

2
~ ZeiQpa+iQ”[ei(Q+k)pa+ei(Q_k)pa] | ‘ L ‘ L ‘ L ‘ |

p
so that in addition to the Bragg peaks we get weak satellitesat Q =G £k



What Happens if the Wave Moves?

If the wave moves through the chain, the scattering still occurs at
wavevectors G + k and G — k but now the scattering is inelastic

For quantized lattice vibrations, called phonons, the energy change of
the neutron is where o is the vibration frequency.

hao

In a crystal, the vibration frequency at a given value of k (called the
phonon wavevector) is determined by interatomic forces. These
frequencies map out the so-called phonon dispersion curves.

Different branches of the dispersion
curves correspond to different types
of motion

phonon dispersion in 3¢Ar



A Phonon is a Quantized Lattice Vibration

e Consider linear chain of particles of mass M coupled by
springs. Force on n’'th particle is

F. =au, +a, U, +u. )+a,u, ,+U. ,)+..

o\ '\\
First neighbor force constant displacements

e Equation of motionis F =M,
+ Solution is: U,()= AS™ ) with; = a sin’ Crea)

q_0+2_7r -|-4_7Z- +E2_ﬂ- ®

L L 2 L Lat

| @@@QQ@OOOQ#

—fal— /"

Phonon Dispersion Relation: | |
Measurable by inelastic neutron scattering 0.5 05

L ga/2m



Atomic Motions for Longitudinal & Transverse Phonons

Q=—:(0.1,0,0)
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Transverse Optic and Acoustic Phonons
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General Expression for d?c/dQdE

Squires (eqn 2.59) derives the following expression:

d’c k' 1 C [ ari0.R(0) 4G R (D) i
e = Zﬂh;bibi. j<e 6 t>e gt

where R, (t) is a Heisenberg operator i.e.

g IQR(1) _ giHt/hg-iQ-Rig=HI/A  \yhare H js the Hamiltonian of the scatterer
and < > denotes a thermal average over the possible states, A, of the

scatterer - - i.e. forany operator, (A) =" p,(1|A4)
A

Note that, because of the operators and the average over the states of
the system, this expression is not easy to evaluate in the general case

Note also that the exponential operators do not commute — each
contains H and therefore p, and p and R do not commute.



Correlation Functions

o~ 1 1, Lo S R} (0) JIGLR (D) 4R
Suppose we define: G(r,t) = e © <e e >dQ
(27)° v Z

and S(G, o) = —— j G(F,t)e'@™dF.dt  then we find
27th

d’c k' ~ . .
=b% — NS(O, rovided there is only one type of atom
(deEleOh coh k (Q a)) p y yp

Squires (eqn 4.14 to 4.17) shows that

G(F,t) = %Z | <5{r'—ﬁ L(0)}5{F+T -R, (t)}>dF'

* Note again that the operators do not commute. If we ignore this fact, we
can do the integration and obtain

C-:'classical (F’ t) = %Z<5{? - Iij (t) + ﬁj(o)}>

Nk




Correlation Functions (cont’d)

G(:Iassical (F’ t) = %Z<5{F o I:_éj (t) + F_éj(o)}>

LY

We expressed the coherent scattering cross section in terms of G(r,t)

If we use the classical variant given above, there is a clear physical
meaning — G(r,t) is the probability that if particle j’ is at the origin at
time zero, particle j will be at position r at time t.

We can do the same thing with the incoherent scattering and express
it in terms of a self-correlation function whose classical version is

Giascar (F11) = ({7 — R, (t) + R; (0)})

This says that the incoherent scattering is related to the probability
that if a particle is at the origin at time zero, the same particle will be
at position r at time t.



Inelastic Neutron Scattering Measures Atomic Motions

In term of the pair correlation functions, one finds

d’c K' -
T0dE | bz, M NS(Q, w) (h/21)Q & (h/2n)w are the momentum &
' coh energy transferred to the neutron during the
2 ' . scattering process
d%o = biic_NSs(Q’a))
dQ.dE ) K
where

S(Q,w) = % j j G(F,t)e" @™ drdt and S,(Q,w) = % j j G, (F,t)e' @™ drdt

* Inelastic coherent scattering measures correlated motions of different
atoms

* Inelastic incoherent scattering measures self-correlations e.g. diffusion



Much of the Scientific Impact of Neutron Scattering Has Involved
the Measurement of Inelastic Scattering

|
|
[ 10000
| I I I I
|
| | === SPSS - Chopper Spectrometer —
| ILL - without spin-echo o E)I(ndtt:t:ed
. . itation
| 100 ILL - with spin-echo Mag nets Hxndorgg:" Spaions
| [ =T n i ; Crystal Momentum| |
| = © Elastic Scattering Felds . Distributio
Coherent Spin Vibrations
| B Modes in  Waves —
| Glasses v_lt.)atlti_ce
| 9 Py iduids Electron- : ;an:jorjs.
| g 1T Molecular | tpho;on Anharmonicity —
Motions nteractions -

g 1— ﬁaigerﬂbﬂuizemvg] w Memlhitsial ~ i o " Crystaland T g ncwraewllsi ubtures B
| @ i[l!lwlrils Isﬁtcls [ | = ot m- Mag muphouSl sﬂnqmih_
| (é _.Pllemsn.So l(-is ] - Btructures, yﬁe icity =
| c Critical

= Scattering Slower
s, 0.01 Motions ]
| O Resolved

S
| o Diffusive

ﬁ Aggregate Modes
| — Motion —
| Polymers Molecular

and Reorientation

| 104 | Biological Tunneling |
| Systems Spectroscopy
| Surface
! — Effects? _|
|
| -
.10 6 1 ! 1 l
| 0.001 0.01 0.1 1 1 10 100
| QA

Energy & Wavevector Transfers accessible to Neutron Scattering



The Accessible Energy and Wavevector
Transfers Are Limited by Conservation Laws

* Neutron cannot lose more than its initial kinetic energy &
momentum must be conserved

hw A E. q

Qq
\
“ elastic
scattering
Q2
00
a8 Intersection of the dynamical
20 = range surface (paraboloid) with
40° 180° a (rotationally symmetric) dis-
60° 160° persion surface. The projection
407 of the lines of intersection

80° ° o
100° Tawiten into the Q-plane are different

for energy gain and energy loss



sample detector
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Elastic Scattering as the tl [ Limit of G(r,t)

Elastic scattering occurs at = 0. Since it involves a d(w), only the part of
G(r,t) which is constant contributes

G(r,t) decays as t increases, so the constant part is G(r,l )

Since we only need the part of the correlation that is time-independent,
we can write (noting that the correlation between the positions of j and j’

are independent of t as t-> [1 )

G(F,t) = %Z | <5{F'-F§ L(O)}S{r+F - R, (t)}>dF'

Note — no truly

G(F, ) = %Z | <5{F'—§ j.}><5{F'+F ~R j}>dr' elastic scattering
) for a liquid

1 . L\ e

= Wj<p(r )} p(F'+T))dr

where p(T") Is the particle density operator at any time
G(r,l ) is called the Patterson function




The Static Approximation

Earlier we had :

2
d’o bcohk—N —jG( F,t)e! @ dF dt
dQdE’ k

where G(r,t) = 1 ] 1 J‘eid.rZ<e—i<§.§j-(0)ei<§.§,—(t)>
(27)° N =

e In diffraction measurements, we measure scattered neutron intensity in a
particular direction, independent of the change in neutron energy —i.e. we
integrate the cross section over E = ho/2n. This is the Static Approximation.

Because %5 (t) _ 1 _[ e'“d (hw)
2 ¥

the integral over o picks out the t = 0 value of G to give
dG static o
(—) =b% N j G(F,t)e'®dr.dt.dw
dQ

_b2

coh

N j G(F,0)e“"dF



Comparison of Elastic Scattering and the
Static Approximation

static
(g—g = bZ,N [ G(F,0)e"dr
/ coh
dG elastic B
(d_Q = bfothG(F,oo)e'Q'rdF
coh

These are not the same, except in an (unreal) system with no motion

The elastic scattering cross section gives the true elastic scattering that
results when the positions of different atoms are correlated for all
times, as they are in a crystalline solid, even when phonons are
present

The static approximation, as its name suggests, gives the scattering for
a system that is frozen in time



The Intermediate Scattering Function

Another function that is often useful is the Intermediate Scattering
Function defined as

1(9,1) = j G(F,t)e' o dF
This is the quantity measured with Neutron Spin Echo (NSE)

It is not possible to derive exact expressions for |, G or S except for
simple models. It is therefore useful to know the various analytical
properties of these functions to ensure that models preserve them.
Squires shows:

1(Q,t) = | *(Q,—t); 1(Q,t) = 1(-Q,~t +ifi/k,T)
G(F,t) = G*(-F,-t); G(F.t) =G(-F,-t+in/k,T)
S(Q,@)ZS*(Q,Q)), S(Q’a)):eha)/kBTS(_Q’_w)

There are also various sum & moment rules on these quantities that
are sometimes useful (see Squires for details)



Magnetic Properties of the Neutron

The neutron has a magnetic moment of -9.649 x 1027 JT-
Hp = —YUNO
where uy = %m Is the nuclear magneton,
p

m, = proton mass, e = proton chargeand y =1.913
o Is the Pauli spin operator for the neutron. Itseignevalues are +1

Note that the neutron’s spin and magnetic moment are antiparallel
Because of its magnetic moment, the neutron feels a potential given by:

Vi (F) =—1,.B(F) where B(F) = uouH (F) = 1o[H (F) + M (F)]

Thus the neutron senses the distribution of magnetization in a material

Homework problems: What is the Zeeman energy in meV of a neutron in a 1 Tesla field?
At what temperature is the Boltzmann energy equal to this Zeeman energy? What is the
effective scattering length of a “point” magnetic moment of one Bohr magneton?



Magnetic Scattering of the Neutron

For nuclear scattering, the matrix element that appears in the expression

for the scattering cross section is: » bje'>"™
j

The equivalent matrix element for magnetic scattering is:

o 1 &M (Q) where ug = " _is the Bohr magneton (9.27 x107%* JT™)
2B 2m,
2
and ry = Zl—oe— is classical radius of the electron (2.818 x 10 nm)
T m,

Here ML(Q) is the component of the Fourier transform of the
magnetization that is perpendicular to the scattering vector Q . This
form arises directly from the dipolar nature of the magnetic interaction.

Unlike the neutron-nucleus interaction, the magnetic interaction of the
neutron with a scattering system specifically depends on neutron spin



Derivation

The B field at distance R from a magnetic moment M is &ﬁA[ MAR):—ﬂﬁA(MAV(ll R))

dr R3 Az
2
Since j—exp(lq R)dq = andqjexp(lchose)d(cose) 47rj m(qR) q= 2
R
- [ MAR 1 1z, (a RS O
VA =——| —=VAIMAV{expIq.R
(R3] el (MAV{expid. R}

But MAV{expig.R}=iMAGexpiG.R and VAMAGexpid.R =iGAMAGexpid.R

-~ ( MAR 1 1. (= N o= 1 = NI
SO VA( =3 j—Zﬂzjqqu(MAq){expnq.R}dq—M—Z_[ML(q){expnq.R}dq



The Magnetic Scattering Cross Section

Development of the magnetic scattering cross section follows the same
formalism as for the nuclear cross section, with nuclear matrix element
replaced by the magnetic interaction matrix element given above

Need to keep the explicit dependence on neutron spin (or average over
neutron spin states for an unpolarized neutron beam).

— Magnetic scattering may cause a change in the neutron’s spin state

General expressions tend to be complicated, so specific expressions are
obtained for various contributions to sample magnetization e.g. unpaired
electron spins

The form of the magnetic cross section implies that neutrons are only
sensitive to components of the magnetization that are perpendicular to Q.



Scattering by lons with Unpaired Electrons

* Including only magnetization due to unpaired electron spins and assuming
an unpolarized incident neutron beam:

d’c  (1p)° K’
dQ.dE 27h  k

D (Bup —QuQp) D Fe(QF4 (Q)
a,p

ldi*d"
X [ dt{exp{-iQ.Rye(0)}exp{iQ Ry (O}){Sf- (0S5 () )e ™

where F,(Q) is the Fourier transform of the electron spin density around
atom d, often called the atomic form factor; S¢ is the o component of the
electron spin and /,d labels an atom d in unit cell /

* This expression can be manipulated to give the scattering cross sections
for elastic magnetic scattering inelastic magnetic scattering and magneto-
vibrational scattering



What Happens to a Neutron’s Spin When the
Neutron is Scattered?

* The cross section for magnetic scattering that takes the neutron spin state
from o->c’ and the scattering system from A->A’ is:

2 2
[ d%o j =(ﬂj o 2l6M o) 5(E, ~Ex+ho)
dQ.dE oo\ 2ug ) K
ol—c'A

* One can show (see Squires) thatif |u}),|V)are the neutron spin eigenstates:
(UM |[u)y=M ,; (V[g.M |V)=-M ,; (v[g.M Ju}=M , +iM ,; (ulgM_ |[v)=M, —iM

so, sample magnetization parallel to the neutron’s magnetic moment (z)
does not change the neutron spin, whereas perpendicular components of
magnetization ‘flip’ the neutron’s spin

* Homework: show that for a paramagnet (where <Si“8jﬁ> = %@jéaﬂS(S +1) for spinsiand j)
— If zis parallel to Q, the scattering is entirely spin flip
— If z is perpendicular to Q, half the scattering is spin flip



Inelastic Magnetic Scattering of Neutrons

* |nthe simplest case, atomic spins in a ferromagnet
precess about the direction of mean magnetization

H=>J(-1S.5 =H, +Zhobb,
20

exchange coupling

spin waves (magnons)
ground state energy
with
ho =2S(J, - where J =XJ(I)e"
| ( ’ q) “ Z (1) Fluctuating spin is
perpendicular to mean spin

hw, =Dg’ isthe dispersion relation for a ferromagnet  direction /

YYYYIPIYYYYY

Spin wave animation courtesy of A. Zheludev (ORNL)



Instrumental Resolution

e Uncertainties in the neutron
wavelength & direction of travel
imply that Q and E can only be
defined with a certain precision

* When the box-like resolution
volumes in the figure are convolved,
the overall resolution width is the
quadrature sum of the box sizes.
Small “boxes” give good resolution.

* The total signal in a scattering
experiment is proportional to the product of the “box” sizes

The better the resolution, the lower the count rate



Examples of Specialization of Spectrometers:
Optimizing the Signal for the Science

* Small angle scattering [Q = 4n sinb/A; (8Q/Q)?2 = (§A/A)2 + (cotd 56)?]
— Small diffraction angles to observe large objects => long (20 m) instrument

— poor monochromatization (A/A ~ 10%) sufficient to match obtainable angular
resolution (1 cm? pixels on 1 m? detector at 10 m => 60 ~ 103 at 6 ~ 10-2))

* Back scattering [0 =n/2; L =2 d sin 0; 3A/L = cot 0 +...]
— very good energy resolution (~neV) => perfect crystal analyzer at 6 ~ /2
— poor Q resolutlon => analyzer crystal is very Iarge (several m?)




Neutron Scattering Instrumentation is Designed
to Compromise between Intensity & Resolution

e /KT

Maxwellian distribution of neutron velocities  P(v) ~ e 2

3/2
T

Liouville’s theorem — the (6-dimensional) phase space density of non-
interacting particles cannot be increased by conservative forces

— Brighter sources => colder moderators or non-equilibrium neutron production

—»>

We can only increase scattered intensity at a given (Q,E) by increasing
the phase space volume

-

Design instruments to have good resolution in the direction of (Q,E)
space that is important for the science

Neutron optics & instrumentation is designed to:
— Maintain neutron brightness R
— Provide good resolution in a chosen direction in (Q,E) space
— Simultaneously measure as many resolution elements [i.e. (Q,E) points] as is useful



General References

e Introduction to the Theory of Thermal Neutron Scattering
by G. L. Squires
Reprint edition (February 1997)
Dover Publications
ISBN 048669447

e Neutron Scattering: A Non-Destructive Microscope for Seeing Inside Matter
by Roger Pynn
Available on-line at http://www.springerlink.com/content/978-0-387-09415-1

 Elements of Modern X-Ray Physics
by Jens Als-Nielsen and Des McMorrow
John Wiley and Sons

ISBN 0471498580



SANS References

Viewgraphs describing the NIST 30-m SANS instrument
— www.ncnr.nist.gov/programs/sans/tutorials/30mSANS _desc.pdf

SANS data can be simulated for various particle shapes using the
programs available at:

— www.ncnr.nist.gov/resources/simulator.html

To choose instrument parameters for a SANS experiment at NIST go to:
— www.ncnr.nist.gov/resources/sansplan.html

A very good description of SANS experiments can be found at:
http://www.strubi.ox.ac.uk/people/gilbert/sans.htmi



END
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