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Settled Phosphors

SETTLE PHOSPHOR
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Settled Phosphors
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X-ray Detectors Il

GaAs Laue pattern. Note that many peaks are a single 27 micron pixel wide.

pa—y

Eikenberry et al, in Photoelectronic Image Devices, 1991, E.L.. Morgan, ed. (Inst, Phys
Conf, Series No 121, Inst of Phys, Bristol, UK, pp 273-280)
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Settled Phosphors

The key to understanding settled screens is
the observation that their PSF gets worse if
the screen is infiltrated with an index
matching fluid. The ideal is to fabricate the
screen so that the light photons execute a
random walk through the screen, with a step
size equal to the mean phosphor grain size,
e.g., ~ 6 microns (Gruner et al, Proc SPIE,
2009 (1993) 98). First, consider a single
crystal screen:
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Settled Phosphors

For high index powders, the probability of light escape into air is very low:
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Settled Phosphors

So light takes a random walk through powder screens with low index gaps between the
grains (From Gruner et al, Proc SPIE, 2009 (1993) 98):
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Settled P

The phosphor sensitivity depends
on both the angle of incidence of
the x-ray to the screen surface and
the energy of the x-ray. These two
effects have opposite signs:
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Settled Phosphors

The resultant sensitivity of the phosphor screen varies slowly and smoothly with x-ray
energy and angle of incidence. Because the behavior is slowly varying, a small number of
data points map out the 2-dimensional functional surface of sensitivity vs. angle and x-
ray energy and may be used to calibrate the phosphor response. This surface is readily fit
to a surface quadratic in energy and angle. The coefficients of this fitted surface may be
readily used to compute the response. (From Gruner et al, Proc SPIE, 2009 (1993) 98)
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Fiber Optics

Fiber Optic Bundles

An glass optical fiber consists of a glass core of index N, surrounded by a glass cladding
of index N;: As long as the core index is higher than the clad index, there will be a range
of incident angles which result in total internal reflection of the light = propagation of
light down the fiber. Total internal reflection can be very efficient, with losses of less
than 0.000001/reflection, as compared to aluminum mirror which might lose
0.1/relection!
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Figure 1 Refraction, Reflection, and Numerical Aperture

From W.P. Sigmund, “Fiber Optics.” In Handbook of Optics, W.G. Driscoll & W. Vaughan,
eds. (MceGraww-Hill, NY, 1978).
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Fiber Optics

By Snell’s law, the maximum angle for acceptance of light into the fiber is given by
N;sin6,,, = ':sz - N:f)lma

where sind,,,, is called the Numerical Aperture (NA). Now a days, NA=1 fiber optics

are available, which 1s simply amazing: NA=1 fibers will accept light right up to 90° to
the surface! The following graph shows the transmission of a fiber optic plate of
NA=0.87 fibers.
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Fiber Optics

Glass fibers may be drawn down to micron diameters, stacked side-by-side and fused into
a coherent bundle of glass. If the ends of this bundle are polished, the fiber optic bundle
will transmit light with amazing efficiency from one side of the bundle to the other. The
resolution of the bundle 1s then set primarily by the fiber size. It 1s also set by light scatter
from defects in the fiber, since a light ray which i1s scattered beyond the critical angle will
single be transmitted across the fibers. To prevent this, modern fiber optic bundles
incorporate black, light absorbing fibers between the light transmitting fibers. This 1s
called Extra Mural Absorption or EMA. Fiber optic bundles without EMA are almost
useless.

Figure 5: Square Pack and Hex
Pack with Interstitial EMA
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Fiber Optics

A fiber optic bundle, or boule as it 1s called, may also be drawn and cut to create a fiber

optic taper.
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Fiber Optics

Why do this? Fiber optic tapers are amazingly efficient. Recall that a good phosphor
might be, say, 15% efficient in converting x-ray energy to visible light. So for an 8 keV
X-ray converting in a green emitting phosphor, one might get

8000 eV/x-ray x 0.15 ~ 500 photons,
2.5 eV/green photon

half of which go the wrong way. So one might ~ _[

get, say, 250 photons/x-ray. CCDs are usually \ E_0 TAPENR
small and desired x-ray detective areas are \ TRANSM1SSIO N
frequently large, so there is a need to | \eomencar

demagnify the phosphor screen image. We ‘g'r.o— \\ ﬂ
could demagnify either with lenses or with A N

fiber optic tapers. 2

Fiber optic tapers are close to the ideal set by
the brightness theorem, e.g., the product of
fiber area and divergence on the input is
nearly the same at the output:

L | |
o 2 3 4

TAPER RATIO

C.1. Coleman, Adv. Electronics Electron Phys 64B (1985) 649.
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Fiber Optics

Lenses are much worse, simply due to solid angle subtended for a given focal length. The
Image i

Object

lens coupling efficiency for magnif. M =

{ 4 } where /= lens (1/f).

2/(1+M)
M F.O. taper effic. (f/1.0) lens effic.
1 75% 6%
0.5 20% 3%
0.3 13% 1.3%
.25 9% 1%

Coleman, 1985
For 4:1 demagnification, coupling the phosphor to the CCD by a /1.0 lens would result
in about 1% x 250 = 2.5 photons/x-ray onto the CCD. The CCD has a quantum
efficiency of, say, 30% , so we get less than one e-h pair / x-ray, which stinks, given that
the noise per pixel of a good, slowly scanned, cooled CCD 1s 5 electrons. But if we use a
taper, we get 9% x 250 = 22.5 photons/x-ray onto the CCD. Times 30% CCD QE and we
get about 7 e-h pairs/x-ray, which gives a per pixel S/N of unity. So by using FO-tapers
we can get excellent efficiency even with 4:1 demagnification

Cornell University 15
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Fiber Optics

Fiber optic tapers suffer from some problems, though, which makes FO taper
specification a job only for the experienced:

e FO manufacture is a black art and the world’s supply comes from just a few small
firms, most of which are within a few miles of Sturbridge, MA. The employees play
musical chairs.

e FO tapers are available up to about 160 mm at the wide end, but these are heavy and
expensive. The solution, which is expensive and complex, is to build a CCD mosiac:

Cornell University 16
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Fiber Optics

e High resolution, high efficiency tapers require high NA fibers and excellent EMA.
The best options are not available in large tapers. EMA performance is very
dependent upon the type of glass.

e Rare earths are used in making the FO. These carry actinide contaminants which
cause “zingers”, which are radioactive decay excitations of the phosphor and CCD.

e FO boules consist of a hierarchy of stacked fiber bundles. Defects in between the
substructures are visible as “chickenwire™ and shears

e Broken fibers and bubbles lead to measles.

Deckman & Gruner, Nucl fnst Meth 246 (1986) 527..

@i:ﬂz Cornell University 17
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Fiber Optics

Tapers suffer from gross distortion

Large Taper
Small Taper 8 P

Cornell University 18
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CCDs

CCD image Sensor Hydraulic Analogy 462
The CCD is an astonishing, Photon
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Figure 3 - Charge-to-voltage conversion at the readout stage
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CCDs

CCDs work by charge shifting, which permits the neat trick of making a fast 1-
dimensional detector.
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CCDs

An example o the use of charge shifting is the following time-resolved pressure-jump
experiments performed at the NSLS (see Osterberg et al, 1994; Erramilli et al, 1995):

DOPE, excess water, H, = L_, 25 C, 102 bar — 1935 bar, 9 msec/line. NSLS X-9.
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CCDs

DOPE, excess water, H,, > L_, 25 C, 1895 bar — 222 bar, 9 msec/line

oy

QS U:IJ (o : ;

22

Detectors 111



CCDs
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CCD Considerations

e Format (e.g., 1k x 1k)

e Pixel size, typically (20 —25 pum)’
® MPP vs. non-MPP

¢ Blooming

e Read-out Speed

e Single vs. Multi-port CCDs

e Operating Temperature

e Controller flexibility

Considerations are constrained by CCD availability and FO-
bonding options.

i Cornell University 24
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CCD Detector Design Handbook

1) Phosphor efficiency (x-ray energy/light energy) ~10%.
Conservatively, given collection losses, say 5%.

Example:
10 keV « 5%

2.5 eV/photon

~ 200 photons.

2) Lens coupling efficiency for magnification, M = Im:;a,ge
Object
M , where f=lens (1/f).
2f(1+ M)
3) Fiber optic tapers do better:
M F.O. taper effic. (f/1.0) lens effic.
| 75% 6%
0.5 20% 3%
03 13% 1.3%
0.25 9% 1%

Cornell University
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CCD Detector Design Handbook

4) Scientific CCDs in slow-scan, cooled mode
conservatively have
~ 10 e- noise/pixel
~ 30 — 40% quantum efficiency

5) Details Count!!

Cornell University
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CCD Detector Design Handbook

Let’s try some real design EXAMPLE ¢

examples: c/10
LENS
A X-RAY g é-
Y W, N {n - C CD
10 eV 1 T
PHOSPHOR

1 10 keV x-rAY VYIELDS 200 PHOTONS

LENS EFFICIENCY = 0.00])
L PROTONS INCIDENT ON ceD
= 200 » 0.0 = D.72 /X—Rﬁ‘f

FOR HoY, QAUANTUM EFFIC., TN
CeD, EACH X-RAY VYIiELDS

©.7L PHOTONS . 0.y e~

= 0, il
X~ RAY eHOTON Dgx_gﬁy
SI-NVAL o008
NOIS B i ©.008
Pixe o
gatr [
—
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CCD Detector Design Handbook
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EXAMPLE ¢

/1.0

| X-RAY 2 1 Lens 4
ety IMAGE TUBEY s ovn 0 §| ced
10 eV L0 R T

15 ¢va PHOSPHOMR

| 10 KV X-RAY =3 200 PHOTONS
x (IMAGE TURE GAIN OF 20)= 4000 PHOTSS

x(LENS EFFICQ. o 0.00%) = L% PHOTONS

x (40P CCD QUANTUM EFFIC)= 11 &
x-RAY

S = 1

0 To =L

getrer, BULUT

e —

&) NEED> IMAGE TUBE

B) GET SIGNAL INDUCED
NO)SE

28

Detectors 111




- %"I;

CCD Detector Design Handbook

The "coin" test is a simple test for signal induced background.

Cornell University
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CCD Detector Design Handbook

The “1k detector” served as a very successful prototype for the generic CCD designs
which followed (Tate et al, J Appl Cryst, 28 (1995) 196. It has been the main data
acquisition instrument of an enormous number of experiments.
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CCD Detector Design Handbook

It's quantum chain: =
NOTE: = . FmER
E OPTICS
35“?;, EFFLC.
5 Cam a
PHOSPH 612 -
AIRIRED 10.5 e
BLA CI N _
PLASTIC o= ge
BUNDLE o 5:1&5}- i
. g =
—
1 10
ko™ M-RAY
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I
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DRIVE)}
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CCD Detector Design Handbook

CCD ' Thomson TH7896 AVRNF
Pixel format 1024 = 1024
Fiber optic reduction ratio 2.6:1
Active input area 51 x 51 mm?2
Pixel size at phosphor (microns) 50.1
Phosphor Gd,0,S8:Tb
Operating temperature =60 °C
A/D resolution (bits) 16 *
Gain (e7/ADU) 4.6
Sensitivity (e7/5.9 keV x-ray) 4.6
Read noise (e"/pixel) RMS : 8
Dark accumulation (e~/pixel/s) 0.8 at —60 °C
Full well (e7/pix) 4x103
Point spread (microns) '

full width half maximum 80

full width tenth maximum 165

full width hundredth maximum 230

Fw 0.0 HEO

TABLE II

Detector sensitivity vs. x-ray energy

X-ray energy (keV) 59 8.0 8.9 11.0 13.5 15.0
Fraction of x-rays stepped! 0932 | osss | 0975 | os7s | 0703 | 0430
[Signalfineident x-ray (&) 4.6 7.1 7.7 10.3 L1 10.3
ISignalfstopped x-ray (e) 49 7.2 7.9 1.7 15.8 240
Sigralstopped x-rayEnergy (&) 0.83 0.90 0.89 1.06 116 133
Quadratic response cosfficient? — 35x107]-2.2=109 | 2.0x10° | 6.0x10% | 1.2x10+*

! For 115 mgfom? Gd,0,5:Th phosphor.
2 Quadratic coelficient, B, chamcicrizing the change in detector response, B, as a fumction of angle as
R=1+B =@, where 8 is given in degrees,

TATE erell  T.APPL. CRNST. 48 CI995) 196, 32
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“1-k Detector”

This 18 an example of a diffraction pattern taken at the CHESS F-1 station using the 1k
detector. The actual size of the diffraction pattern on the detector face 1s 5 cm across.

Tomato bushy stunt virus. F-1, 100 micron collimator, 1,3 space group, 365 A unit cell,
0.2° oscillation, 40 sec exposure. (Courtesy of D. Rodgers & S. Harrison)

Cornell University 33
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“1-k Detector”

The accuracy of the 1k-detector led to electron density maps which were quite
extraordinary for their time and finally convinced the community that CCD detectors
could deliver data comparable to photon counters (Figures from Walter et al, 1995)

2|Fﬂl — F;| electron density map of lipoxygenase at 1.4 A resolution. 839 amino acids, P2.

96% complete; 1,135,803 observations, Rgyy = 3.6% to 1.4 A The data set was taken in 1
evening at CHESS by Wladek Minor.

Cornell University 34
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“1-k Detector”

Catalytic domain of Cellulase E2 at 1 A resolution. 70% complete, Rsym = 9.1%.
CHESS. Data by J. Sakon & P.A. Karplus.

. Emt, Cornell University 35
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“1-k Detector”

Ossamycin, CHESS F-2, 25 keV x-rays, 1.0 A resolution, direct refine method. Data by

E. Lobkovsky & J.C. Clardy.
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CCD Dark Current

The dark current on a well-cooled CCD detectors is sufficiently low that long exposures
are possible, even if several frames need to be summed. The following example is of a
tri-block co-polymer monodomain sample taken during an 8.9 hour exposure on a
rotating anode generator.

Kraton D-1102 (pStyrene-pButadiene-pStyrene = 1 1k:58k: 11k mol. wt.). Sample roll-
cast from cumeme by the Ned Thomas group. Data by D. Hajduk & S. Gruner.
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