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 Control the energy (E) and bandwidth (ΔE) of the beam.
– Monochromatic beam
– Polychromatic

 Control the size/divergence of the beam (often related).

 Control the polarization of the beam.
– Linear
– Circular

Why Do We Need Optics
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 Since the optical properties of a material depends on the index of refraction,
we need to calculate that at x-ray energies/frequencies.  The dielectric
constant, κ,  is defined as follows:

κ  = D/E = (E + 4πP)/E = 1 + 4π(P/E)

where P is the dipole moment (or polarizability), D the displacement field, and
E is the electric field vector of the incident EM wave (in our case the x-ray
beam).

 Using a simple model one can calculate the polarizability of the material:

κ  =  1 + 4π(P/E) = 1 + 4π (e2/m)ne [1/(ωo
2 - ω2)]

where ne is the electron density, ω  the frequency of the x-rays, and ωo some
natural frequency of the electrons in the solid, (in the Drude model its the
frequency of the collective oscillations of the electrons around the atom or the
so-called plasma frequency).

Dielectric Constant
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 For Si (my prototypical solid), ne = 7 x 1023 e/cm3 and so the plasma frequency
is:

ωo  = 5 x 1016/sec

 For a 1 Å x-ray, the angular frequency, ω (= [2πc/λ]),  is 2 x 1019/sec (>> ωo)
and so we can write:

κ  =  1 + 4π (e2/m)ne [1/(ωo
2 - ω2)] ≈  1 - 4π (e2/m)ne [1/(ω2)]

 The index of refraction, n,  is just the square-root of the dielectric constant and
can be written as:

n  = κ1/2  = [1 - 4π((e2/mc2) c2ne (λ/2πc)2 )]1/2

 n  = κ1/2  = [1 - (ne(e2/mc2) λ2/π)]1/2  ≈ 1 - 1/2(nere/π)λ2

where re = (e2/mc2) is the classical radius of the electron  (2.82x10-13 cm).

Plasma or Natural Frequency of Electrons
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 This simple model did not include any absorption of the incident
radiation.  A more detailed calculation would result in an expression:

n  = 1 - δ - iβ

where δ = (nere/2π)λ2 and β = λµ/4π, with µ the linear absorption
coefficient (I = Ioe-µt).

 When you plug in the numbers for the real part of the
index of refraction you et:  δ = 10-5 to 10-6

 Consequences of:
– an index of refraction less than one
– differing from unity by only a few ppm

Real and Imaginary Parts of the Index of Refraction
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 The reflection and refraction of x-rays can be treated
as any other electromagnetic wave traveling in a
medium with index of refraction n1 encountering a
boundary with another material with index of
refraction n2.

 The resultant kinematic properties (which follow from
the wave nature of the radiation at boundaries) are:

– The angle of incidence equals the angle of
reflection

– n1 sin(φ1) = n2 sin(φ2)  (Snell's Law), where
the φ's are measured with respect to the
boundary normal

Snell’s Law
φ1

Air (n1 = 1)

φ2
n2

Typical values for n2 (at 5890Å) are:
water: n2 = 1.33
glass: n2 = 1.52

φ1

Air (n1 = 1)

φ2
n2

θ1

For x-rays, the direction of propagation
bends away from surface normal.
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 Let an x-ray (in vacuum, where n1 = 1) impinge on
a material with index of refraction n2.  From Snell's
Law, it is clear that φ2 > φ1, since n2 < 1. When φ2
= 90°, we have:

sin(φc) = cos(θc) = n2cos(0);    (θc = 90° - φc)

1 - (θc)2/2 = 1 - δ

θc = (2δ)1/2 

θc is the so-called critical angle, the angle at which
there is total external reflection.

 Recall that the typical values for δ at 1 Å is 10-5 to
10-6 and so the critical angle is going to be about
10-3 or a few milliradians.

Critical Angle for Total External Reflection

φc

Air (n1 = 1)

φ2 = 90° n2

θc

For x-rays typical values for n2
are (1 - 10-5) to (1 - 10-6)
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Values of the Critical Angle for X-rays
In practical units, (assuming Z/A = 2):

θc[mrad] = 1.6 λ[Å] (ρ [g/cm3])1/2
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 The amplitude of the reflected wave can
also be determined (the Fresnel
equations).  Sparing you the details, the
intensity ratio of the reflected and
incident beam is given by:

IR / I = ER/E2

 From these relations it can be shown
that:
– Below θc, there is unit reflectivity (if

β =0)
– Above θc, the intensity falls off as

(1/16)(θc/θ)4

X-ray Reflectivity Below θc, there is unit reflectivity (if β =0)

Above θc, the intensity
falls off as (θc/θ)4
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 All the above was developed assuming a monochromatic incident beam
and a variable angle of incidence.  Often mirrors are used as first optical
components.  This means polychromatic incident radiation and fixed
angle.  The relationship for the angle and wavelength (or energy) can
be rewritten in terms of a cut-off energy, Ecut,

Ecut = hc/λcut = (hc /θ) (nere/π)1/2

Energy Cut-off for a Fixed Angle of Incidence

 For energies below the cutoff energy (E < Ecut), there is near total
reflection, while for those energies above the cutoff energy, the reflection
coefficient is considerably reduced.

Since E[keV] = 12.4/λ[Å] and θ[mrad] ≈ 1.6 λ[Å] (ρ [g/cm3])1/2, we can
write the above eq’n in practical units as:

Ecut [keV] ≈ 20 (ρ [g/cm3])1/2 / θ[mrad]
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 Low-pass filters
– Since there is an energy cut-off above

which radiation is reflected with low
efficiency; this means that mirrors can
be used to effectively suppress high
energies.

– Depending on the critical energy of the
source, mirrors can effectively remove a
considerable amount of the heat and
reduce the thermal loading on
downstream optics.

– Since in many cases the angle of
incidence is fixed (due to the various
beamline components downstream),
mirrors are designed so that the cut-off
energy, Ecut, can be varied by having
several different coatings deposited on
the mirror substrate.

Uses of X-ray Mirrors

Fix the angle of incidence and vary
the material properties (density).
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 Production of small beams is important for research for use in micro-diffraction,
microspectroscopy, microtomography and a host of micro-imaging techniques.

 One-dimensional focusing, collimating, etc.
– An ellipse is the ideal shape for a reflecting surface for point-to-point

focusing.  (A source at one foci will be imaged at the other foci.)

– Collimation can be achieved by a
parabola if the source is placed
at the focal point.  (This is simply
an ellipse with the second focal
point at infinity.)

– In many cases cylindrically shaped
mirrors are used rather than ellipses
and parabolas since they are
considerably easier to fabricate.

Focusing with Mirrors

R

1

!

F

F
2

Rm = [2/sin θ] [F1 F2/(F1 + F2)]

Typically, θ = 3 mrad,  F1 = 30m, F2 = 30m and so
Rm = 10 kilometers
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 Two-dimensional focusing (toroids and ellipses)
– An ellipsoid is the ideal shape for a reflecting surface for point-to-point focusing.
– Bent cylinders are often used in place of an ellipsoid.
– The sagittal radius, Rs, is given by:

Rs = Rm sin2 θ

 In our example, from the last slide, q = 3 mrad and Rm = 10 km so the sagittal radius
would be:

Rs = 9 cm

Focusing in Two Dimensions



15

Another system which focuses in two dimensions consists of a set of two
orthogonal singly focusing mirrors, off which incident X-rays reflect successively,
as first proposed in 1948 by Kirkpatrick and Baez.

This system allows for easier fabrication of the mirrors and is used frequently at
synchrotron sources.

Focusing in Two Dimensions - KB Systems
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 By far, the most commonly used optical component for x-rays are
crystals satisfying Bragg’s law, i.e.,

 In nearly all cases, perfect single crystals are used as the diffractive
elements since:

– they have a reflectivity near unity (more later)
– the physics is well understood and components can be

fabricated with predicted characteristics
– they preserve the beam brilliance

Diffractive Optics
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 The name comes from the fact that, during the diffraction process from perfect
single crystals, there is a dynamical interplay between the incident and
scattered beam, which can be comparable in strength.

 In the case of a strong reflection from a perfect crystal of a monochromatic x-
ray beam, the penetration of the x-rays in to the crystal is not limited by the
(photoelectric) absorption, but the beam is attenuated due to the reflecting
power of the atomic planes.   (This type of attenuation is called “extinction”.)

Diffraction from Perfect Crystals

 The theory that describes diffraction from perfect crystals is called dynamical
diffraction theory (as compared with kinematical theory, which describes
diffraction from imperfect or mosaic crystals).
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 The limited penetration means:
–  the beam only interacts with a limited

number of atomic planes
–  the scattered beam gets in and out of

the crystal with little loss of amplitude
from (photoelectric) absorption.

 A consequence of the first item:
– There is a finite angular width over

which the diffraction occurs.  This is is
often called the Darwin width , ωD, for
the reflection (hkl) at some specified
wavelength.

 A consequence of the second item is:
The reflectivity over this narrow Darwin
width is nearly unity.

Darwin Width
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P = cos(60°)

(Scaled angle)
The Darwin width for π-polarization (E || to
diffraction plane) is equal to cos(2θ) times
the width for σ polarized x-rays (E ⊥ to
diffraction plane).

ωD
σ = 2reF(hkl)λ2/πVsin(2θ)

ωD
π =  ωD

σ cos(2θ)

F = structure factor & V = volume of unit cell
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Incoming
beam

Outgoing
beam

Atomic
Planes

X-ray Standing Waves at the Bragg Condition

X-ray
standing
wave

Atoms Amplitude of
the electric
field inside the
crystal.
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At first glance, requiring the use of only
perfect crystals for x-ray optical
components may seem very limiting.
However, silicon and germanium,
are readily available (due to their use
in the semiconductor industry) and are
grown in large boules that are
relatively inexpensive.

Real World Perfect Crystals

Nearly perfect single crystals of synthetic
(grown) diamonds are also desirable,
primarily for their mechanical properties
which are extremely important when used
as first optical components.
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 The most frequent use of perfect crystal optics are for x-ray
monochromators.  They simply use Bragg’s Law to select a particular
wavelength (or energy since λ = hc/E), namely:

 λ = 2d sin(θ).

 If we differentiate Bragg’s Law, we can determine the energy resolution of
the monochromator.

Δλ / λ = ΔE/E = cot(θ) Δ θ

 Because of the small angular divergence of the x-ray beam in the vertical
direction (and the polarization of the beam - in the plane of the orbit),
synchrotron radiation monochromators normally diffract in the vertical plane.

Perfect Crystal Monochromators
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 Contributions to Δθ come from the angular divergence of the incident beam  (Δψ)
and the natural width of the reflection (ωD).

Δψ

Energy Resolution in Monochromators

i.e.  Δθ = [Δψ 2 + ωD 2] 1/2

 A value for the Darwin width (ωD) for the (111) reflection in silicon at 8 keV
(1.5Å) is about 8 sec of arc or 40 microradians.

 Recall that, for an undulator, the opening angle, Δψ, is about 10 - 15
microradians.  In this case, the energy resolution of the mono is determined
by the crystal, and you can’t get any better than that!
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 The most common arrangement for a monochromator is the double-crystal
monochromator.  It:
– is non-dispersive, that is all rays that diffract from the first crystal

simultaneously diffract from the second crystal (if same crystals with same
hkl’s are used)

– keeps the beam fixed in space as the energy is changed.

 There is little loss in the throughput because the reflectivity is near unity over
the Darwin width.

polychromatic

monochromatic

Double Crystal Monochromators
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 In order to maintain the beam intensity and collimation (i.e., brilliance) through the optics,
special attention must be paid to the issue of thermal management.  (See Appendix 2 for
details.)

Thermal Loading on Optics
 Along with the enormous increase in x-ray beam brilliance from insertion devices

comes unprecedented powers and power densities that must be effectively handled so
that thermal distortions in optical components are minimized and the full beam brilliance
can be delivered to the sample.

Process Approx. Heat Flux (W/mm2)

Fission reactor cores 1 to 2

Interior of rocket nozzle 10

Commercial plasma jet 20

Sun’s surface 60

Fusion reactor components 0.05 to 80

Meteor entry into atmosphere 100 to 500

APS insertion devices 10 to 160
(2.4 m and 100 mA)
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Cryogenic Si
Mono

LN2
manifold

Coolant channels

Strain relief

Cooled Monochromators

50.8 mm

Nickel-

plated

copper 

block

Diamond 

crystal

Cooling lines

6.35mm O.D.

Incident 

beam

Diffracted 

beam

Transmitted

beam
44.5 mm

Section

Top 

View

 

Cryogenically Cooled Si Mono

Water Cooled Diamond Mono

One solution to this problem is
to cool the Si crystals to liquid
nitrogen temperatures for that
increases the thermal
conductivity and reduces the
coefficient of thermal expansion.

Another solution to this thermal
problem is to go to other
materials (i.e. , diamond) that
have better thermal and
mechanical properties than Si at
room temperature.
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 There is considerable interest in focused x-ray beams from 100’s of microns
to sub-micron in size.

 We have already seen that
– mirrors can be configured for
– focusing.

 Bent single crystals can also
– be used to focus x-ray beams.

 As an example of non-diffraction
– based optical components, we will
– look at two focusing elements:

•  zone plates
•  compound refractive lenses

More Focusing X-ray Optics
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 1912: Friedrich, Knipping, Laue:
X-rays are electromagnetic waves

→Spatial resolution limit: 

Δr  =  0.6 λ / NA  (≈ λ visible light)

where the numerical aperture,
NA = n sin(θ)

 95 years later (2D resolution):

– Refractive Optics: d ~ 50 nm   (E = 21 keV) (Schroer, APL, 2005)
– Reflective Optics: d ~ 25 nm   (E ~ 15 keV) (Mimura, APL, 2007)
– Diffractive Optics: d ~ 15 nm,  (E = 0.8 keV) (Chao, Nature, 2005)

??

What is the Spatial Resolution Limit?
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Diffractive Focusing Optics:  X-ray Zone Plates

 The wave that emerges from the zone plate is the superposition of
spherical waves, one from each of the zones.

 The wavefront modification is obtained through the introduction of a
relative change in amplitude or phase in the beams emerging from two
neighboring zones.

  Zone plates are diffraction gratings, that
is, structures composed of alternating
concentric zones of two materials with
different (complex) refractive indices.

 The focusing capability is based on
constructive interference of the wavefront
modified by passage through the zone
plate.
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f

rn
Rn

Rn = f + n(λ/2)

Condition so the pathlength
varies by λ/2 for each ring.
 


 
 


The radius of the nth zone is therefore:

rn = (Rn
2 - f2)1/2  = [(f + n(λ/2))2  - f2]1/2

   = [nf λ + n2(λ2/4)]1/2

If f >> n λ, as is usually the case with hard x-rays, then:

rn = (nfλ)1/2   

Zone Plate Physics
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The focal length for the mth order can be written as:

fm = rn
2/ mλn

 In general, the size of the focal spot from the zone plate is determined by the
width of the outermost ring, Δrout , and is given by:

Δx  = 1.22 Δrout/m .

Zones plates with outermost ring widths of less than 30 nanometers can
currently be fabricated for soft x-rays.

Focal Length and Focus Spot Size

Figure from Center
for X-ray Optics
LBNL
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 Phase zone plates have a much better efficiency than amplitude zone plates
(10% efficiency for amplitude zone plates vs 40% for phase zone plates).

 The phase zone plates ease the thickness requirement (as compared to the
amplitude zone plates) but the aspect ratio is still an issue.

Hard X-ray Phase Zone Plates
 The difficulty with making zone plates at hard x-ray

energies is one of  fabrication.  You need:
–  small width outermost zone for focusing (less than

100 nms)
–  but it has to be thick (high) to totally absorb the

unwanted waves
–  i.e. the aspect ratio (height/width) is very large - 102

to 103 and therefore difficult to fabricate

 An alternative to “blocking” out those rays that are out
of phase (as in an amplitude zone plate), the thickness
of the material can be adjusted so that the wave
experiences a phase shift of π.
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  Start with a linear zone plate geometry and then use a Kirkpatrick-Baez
configuration to get focusing in both directions.

A New Approach to Fabricating Zone Plates

  Using state-of-the-art deposition
techniques, start with the thinnest
layer first and fabricate a multilayer
structure with the layer spacing
following the Fresnel zone plate rule.

Slice and polish the multilayer
structure to get a linear zone plate.

• Each MLL comprises 1,588 layers (lines)
• The thinnest layer (line) is 5 nanometers thick
• The MLL has a current focus of 16 nanometers @ 19 keV!

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer Linear Focusing of Hard X Rays by a Multilayer
Laue Lens,” Phys. Rev. Lett. 96, 127401 (2006).

Wedged MLL
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 What has happened over the last several years that now makes the compound
lens not on feasible but now routinely used?  The answer is high brightness
synchrotron radiation beams.

Refractive Focusing Optics:  X-ray Lenses

Incident

X-rays

Incident

X-rays

F

R

Single Refractive Lens

Compound Refractive Lens

F

R

!s

!"

Aeff

 Roentgen's first experiments convinced him that x-rays could not be concentrated
by lenses; thirty years later his successors understood why.

 Refractive lenses were considered by Kirkpatrick and Baez in 1948 for focusing
but were abandoned for crossed mirrors.

R
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Incident

X-rays

Incident

X-rays

F

R

Single Refractive Lens

Compound Refractive Lens

F

R

!s

!"

Aeff

The Lens Maker’s Equation:

1/F = δ (1/R1 + 1/R2 + etc.)

For a single lens:

1/F = δ(1/R + 1/R)

or

F = R / 2δ

If we have N surfaces, all with radius r:

F = R/2Nδ

Compound Lenses
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 Unfortunately materials of large d are also strong absorbers, the absorption
coefficient increasing much more rapidly than δ with increasing atomic
number.  An element of low atomic number, such as beryllium, is indicated.

 Plugging in some numbers, suppose that:
– R = 1 mm
– δ ≈ 10-6

– N = 50

 Then the focal length, F,  would be at 10 m.

  These lenses focus at rather larger distances and are be well adapted to the
scale of synchrotron radiation beamlines.

Why Are They Applicable to SR?
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 Two dimensional focusing can be
achieved by using two arrays of
cylinders at 90° to one another,
but crossed cylinder geometries
have the disadvantage that the
x-rays need to traverse twice the
thickness and this reduces the gain
considerably (since we have the thickness in the exponent).

Focusing in Two Dimensions

 Using spheres instead of crossed
cylinders mitigates some of the
absorption problems but increases
the difficulty of fabrication.
Paraboloids are the shapes we
really want to eliminate spherical
aberrations.

Figures from:
http://2b.physik.rwth-aachen.de/xray/imaging/main.php?language=en&frames=&content=crl#Focusingmethods
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  Phase retarders (see Appendix 3):
– Polarization analyzers and phase

retarders for the determination and
manipulation of the polarization,
respectively, important for magnetic x-
ray scattering.

Other X-ray Optics

Spherically Bent
Backscattering

Analyzer

Source
Sample

Backscattering
Monochromator

Spherically Bent
Backscattering

Analyzer

High Heat Load
MonochromatorDetector

(a)

Source

High Heat Load
Monochromator

Sample

In-line Nested
MonochromatorDetector

(b)

 High-energy resolution
(from eV to milli-eV)
optics for inelastic x-ray
scattering  (see
Appendix 4):
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Although the basic equations the govern x-rays have been around for a while, not
all x-ray optical components were invented 50 years ago and that there is still
plenty of opportunities for the researchers in the field of x-ray optics.

There is still stuff to do……
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The dielectric constant, κ,  is defined as follows:

κ  = D/E = (E + 4πP)/E = 1 + 4π(P/E)

For a single electron:
p= -ex and P = -exne

where ne is the number of electrons/unit volume.  In a simple harmonic approx:

F= ma = mx”= -eE - kx where k is the “spring constant” associated with ωo (= √ k/m).

If x has the form x = Aeiωt, x will be:

x = (e/m)E/(ωo
2 - ω2)  and

P = -(e2/m)neE /(ωo
2 - ω2)

Appendix 1:  Dielectric Constant
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Appendix 2:  Physical Properties of Si, Ge, and C(diamond)
 Thermal gradients, ΔT, and coefficient of thermal expansion, α, contribute to

crystal distortions:

αΔT  = Δd/d = cot (θ) Δθ = cot (θ) ωD.

 We therefore need to look for materials that have a very low coefficient of
thermal expansion, α, and/or have a very high thermal conductivity, k, so that
the material cannot support large ΔT’s.
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These conditions motivate us to use cryogenically cooled silicon or room
temperature diamond as high heat load monochromators.

FOM of various materials

k  -  thermal α   -  coef. of k/α
material conductivity thermal expansion FOM

Si (300°K) 1.2 W/cm-°C 2.3 x 10-6 /°K 0.5

Si (78°K) 14 W/cm-°C -0.5 x 10-6 /°K 28

Dia. (300°K) 20 W/cm-°C 0.8 x 10-6 /°K 25

Appendix 2: Figure of Merit (FOM) for Various Materials and
Temperatures
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Cryogenic Si
Mono

LN2
manifold

Coolant channels

Strain relief

Appendix 2:  Cooled Monochromators
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Cryogenically Cooled Si Mono Water Cooled Diamond Mono
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 At x-ray wavelengths, the index of refraction of all materials is isotropic and so
you cannot use the same approach as with visible light (i.e. birefringence) to
change the phase of the electric field with one polarization direction relative to the
electric field of the other polarization.

Appendix 3:  Index of Refraction Variation near the Bragg Angle

 However, near the Bragg
condition, the σ and π polarizations
“feel” or interact with the atoms in
the crystal to different degrees and
hence the the indices of refraction
are slightly different for σ and π 
polarized waves.  This small effect
can be used to make phase
retarders at x-ray wavelengths.
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Polarization analyzers and phase retarders
for the determination and manipulation of
the polarization, respectively, important for
magnetic x-ray scattering.
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Appendix 3:  X-ray Phase Retarders
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 Recall that a Si (111) crystal has a energy resolution ΔE/E ≈ 10-4.

 However milli-electron volt resolution monochromators and analyzers are often
required for inelastic scattering.

Spherically Bent
Backscattering

Analyzer

Source
Sample

Backscattering
Monochromator

Spherically Bent
Backscattering

Analyzer

High Heat Load
MonochromatorDetector

(a)

Source

High Heat Load
Monochromator

Sample

In-line Nested
MonochromatorDetector

(b) If you look at the equation for energy resolution:

ΔE/E = cot(θ)Δ θ

as θ approaches 90°, cot(θ) goes to zero and the energy spread, ΔE, gets
very small and so a backscattering geometry is employed.

Appendix 4:  High Energy-Resolution Optics
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At θ = 89°, cot(θ)= 1.7 x 10-2.  For E = 20 keV (0.64Å), then:

ΔE = E cot(θ)Δθ = (2 x 104 keV)(1.7 x 10-2)(10-5rad) = 3 x 10-3 eV.

Note: For Si (111) at a Bragg angle of θ = 89°, the wavelength is 6.2Å (2 keV) and
so to get near 20 keV at θ = 89°, we need to use a very high d-spacing such as Si
(11 11 11).

Appendix 4:  High Energy-Resolution Optics

The inelastic
scattering beamline

at the APS.


