
1

 Mantid DGS Data Reduction Guide

M. B. Stone and A. T. Savici

Neutron Sciences Directorate

February-April 2012

v 5.0 May 2012

2

TABLE OF CONTENTS
Introduction and Overview 5
Updates in V 5.0 5
The mantid user’s .bashrc file 5

Grouping 5

Orientation vectors/matrices 6

1. The reduction.xml file 7
Formatting 8

The <defaults> section 8

Required input 8

Optional input 8

The <calibration> section 8

Required input 9

The <scan> section 9

Required input 9

2. Evaluation of the data reduction routines 9
Evaluation within a Python terminal of an analysis Linux machine 9

Set-up 9

Execution 10

Evaluation within a Linux shell of an analysis Linux machine 10

Set-up 10

Execution 10

3. Available output files 11
The summary file 11

The vanadium calibration and mask output file 11

The nxspe file 11

The nxs file 12

The spe file 12

The phx file 12

3

The par file 12

The iofe file 12

The iofq file 12

The mdnxs file 12

4. Single crystal details and capabilities 12
5. Binning 13
Energy binning 13

Detector binning 14

Powder binning 14

Position binning 14

6. Capabilities under development 14
Masking based upon data files 14

Other file types 14

Appendix 1 – keywords 15
Appendix 2 - Example files 19
---Example 1 --- Generation of a vanadium calibration file 20

---Example 2 --- Simplest reduction line 20

---Example 3 --- Saving a data file 20

---Example 4 --- friendlyname and friendlynamelogs. 20

---Example 5 --- set the energy binning. 21

---Example 6 --- Set the efixed value, but it is too far from true value. 21

---Example 7 --- Set the efixed value, and Ei fit works correctly. 21

---Example 8 --- Do not fit the incident energy or T0 value (calce=’false’). 21

---Example 9 --- Combine and average two runs together. 21

---Example 10 --- Set grouping to powder mode and change powder binning. 21

---Example 11 --- Multiple files to be reduced individually (step mode). 21

--- Example 12 --- Splitting up a series of runs by temperature (sweep mode). 21

--- Example 13 --- Several measurements separately reduced 22

--- Example 14 --- single orientation of sample, directly fixing the motor angle. 22

---Example 15 --- single orientation of sample, using logged motor angle 22

---Example 16 --- single orientation, but adding an offset to the motor angle 22

---Example 17 --- Step mode with angles 22

4

---Example 18 --- Sweep mode with angles 1 22

---Example 19 --- Sweep mode with angles 2 22

---Example 20 --- Sweep mode with temperature 23

Appendix 3 – The instrument default file 23
Example 1: arcsdefault.py 23

Example 2: hyspecdefault.py 24

Example 3: sequoiadefault.py 24

Example4: cncsdefault.py 25

Appendix 4 – Known bugs and issues. 26

5

Introduction and Overview
This document describes how to use a standardized time-of-flight direct-geometry spectrometer (dgs) data
reduction routine based upon functions within the Mantid software application. This routine is written to be
used with the dgs instruments at the Oak Ridge National Laboratory’s Spallation Neutron Source: ARCS,
CNCS, HYSPEC, and SEQUIOA. The intention of this routine is to provide a consistent and expandable
cross-instrument mechanism for data reduction. Future developments will include additional time-of-flight
spectrometers at the SNS, and potentially at other facilities, as well as additional features as requested by
the users of this software. A GUI is also being planned for development within the Mantid platform.

We recommend using the example files and working with the local instrument contact as the best
mechanism for learning how to use the data reduction routine.

The reduction routines described here are executed from within the Mantid software application, from a
Linux command line, or from a Python command line. The user generates an XML text file that sets
keywords and variables for data reduction. This text file is referred to as the “reduction.xml” file in this
document and provides a mechanism for batch processing of data from time-of-flight histograms to energy
transfer histograms appropriate for further data visualization and analysis.

This document is organized to describe how to generate and use a reduction.xml file. Section one describes
the reduction.xml file and how to generate it. Section two describes how to evaluate this file to reduce ones
data, and Section three describes the available output of the data reduction routines. In section four, we
describe in further detail the single-crystal capabilities available in these reduction routines. In section five,
we describe additional capabilities in the routine which are under development. Appendix 1 describes all of
the available keyword parameters in the reduction routine. Standard reduction.xml files and examples are
included in appendix 2. A typical default.py file is shown in appendix 3 for the ARCS, CNCS, HYSPEC,
and SEQUOIA instruments. In Appendix 4, we describe known bugs with the current software.

If additional features are requested or programming errors are found, please email these to Matthew Stone
and Andrei Savici at (5us@ornl.gov and 3y9@ornl.gov).

Updates in V 5.0

The mantid user’s .bashrc file
Please use the export statement:

export PYTHONPATH=$PYTHONPATH:/opt/mantidnightly/bin/
in your .bashrc file. This command should be placed after any if..fi statements in your .bashrc file.

Grouping
Standard grouping files for ‘8-pack’ style instruments are no longer need to be made prior to running the
reduction routines. Instead, these files are made during the reduction process if they are required. Standard
values for the grouping keyword are ‘powder’ and ‘yvalXxval’ where yval is in the set
{1,2,4,8,16,32,64,128} and xval is in the set {1,2,4,8}. For more complicated detector grouping, there is
also the option of generating a grouping file and then using the name of this file for the keyword value.

6

Orientation vectors/matrices
A lattice and ub keyword have been added to the reduction routines. These keywords allow one to include
the crystal orientation in the reduction process. In addition, the mdnxs file type is now included under the
save keyvalue. This will save a multi-dimensional nexus file. The lattice and ub keywords are described
further in Appendix 1 and Section 4.

7

1. The reduction.xml file
The reduction.xml file uses keywords and instrument defaults to generate a vanadium calibration file,
generate a detector mask, and reduce a series of data files into energy transfer histograms appropriate for
further analysis. This file is an xml file and follows the conventions of use for this type of file.

The reduction.xml file consists of three sections: defaults, calibration and mask, and scan(s). We describe
the three portions of the file in the corresponding sections of this document. The three sections are
separated with xml style labels as shown in the following example.

<?xml version="1.0" ?>
<dgsreduction>
 <!-- DEFAULTS section -->
 <defaults
 Instrument="ARCS"
 filterbadpulses = "False"
 />
 <!-- CALIBRATION AND MASKING section -->
 <calibration processedfilename = "vanadium_23101_3mono.nxs" units="wavelength"
normalizedcalibration = "True">
 <vanruns>23101,23102-23104</vanruns>
 <vanmin>0.35</vanmin>
 <vanmax>0.75</vanmax>
 <mask algorithm="BankTubePixel" pixel="1,2,3,4,5,6,7"/>
 <mask algorithm="angle" twothetamax="2.5"/>
 <mask algorithm="MedianDetectorTest" SignificanceTest="4.0" LowThreshold="0.3"
HighThreshold="2.0"/>
 </calibration>
 <!--scan(s) section -->
 <scan IPTS="5824" runs="22831" t0="4.0" Efixed="90" kioverkf="1" grouping="2X1"
AngleMotorOffset="5.6" save="nxspe4,nxs5,qjpg,phx" friendlyName="test1"/>
</dgsreduction>

These sections can be in any order, although for clarity we suggest the standard order shown here. The
sections cannot be nested within one another. Information within these sections consists of a series of
keywords and values separated by an “=” sign. The format of the defaults and calibration and mask
sections is to have these values listed on single lines and separated by carriage returns. Each <scan> call in
the scan(s) section corresponds to one call to the data reduction routines. There are different types of scans
which are available for a given ascan. These are described in the description of the scantype keyword in
Appendix 1.

There is a fourth location for keyword parameters. These are located in a file called XXXdefault.py where
XXX is the instrument name (i.e. arcsdefault.py, cncsdefault.py, sequoiadefault.py, and hyspecdefault.py).
An example of this default file is shown in Appendix 3. These parameters are typically set by instrument
scientists of the respective instruments. These files are typically stored in the /SNS/XXX/shared/ directory
where XXX is the instrument name. This file may also be located in the directory you are working in for
the reduction. If you are running the reduction code using an external machine (i.e. not one of the
instrument or reduction Linux machines within the neutron sciences directorate), you will need to copy this
file to the local directory within which you are working.

8

Keyword values can be reset or set in any of the sections. Values are overwritten as the reduction code
traverses from the XXXdefault.py file, to the defaults section, to the calibration and mask section to the
scan section(s). A comparison of the examples in Appendix 2 illustrates how defaults can be set for all of
the individual data reductions. If a keyword value is not set, then the reduction routine will use the default
value.

Formatting
The reduction.xml is an ascii xml file. There are portions of this file which are case sensitive. Keywords
are case sensitive, and are typically lowercase. Keyvalues are also case sensitive. Examples of case
sensitive keyvalues are: instrument, goniometermotor, any filenames, and binning values. Calls to the
<scan> element of the xml file within the scans section can be set up as multiple lines. Each individual
<scan> line is treated as a separate reduction process. Lines with no text, or only whitespace are ignored by
the reduction routines and can be used to improve the layout of the reduction.xml file. One can use the <!--
--> elements to enclose commented text within the reduction.xml file. Single or double quotation marks
may be used in setting keyvalues.

The <defaults> section
The defaults section is used to set default keywords to be used for all of the data being processed as well as
the vanadium calibration files being generated. For example, one may set the kioverkf keyword in the
defaults section, and its value will be applied to all data reduction calls which do not have this parameter
set.

Required input
One must define the instrument with the “instrument” keyword, i.e.

<defaults>
instrument = ‘’ARCS’’
</defaults>

Optional input
Optional input in this section includes being able to set all of the keyword parameters to be used throughout
your reduction routine. For example, filterbadpulses = "False" is commonly included in this section
such that it would be input as:

<defaults>
instrument = ‘’ARCS’’
filterbadpulses = "False"
</defaults>

The <calibration> section
The calibration section is used to generate the vanadium calibration and masking file (this information is
stored in a single file). If the ‘processedfilename’ already exists, then the routine will simply load this file
for use in the masking and calibration of data. If the ‘processedfilename’ does not exist, then the routine
will generate this file. The data from ‘vanruns’ are loaded, and integrated between ‘vanmin’ and ‘vanmax’
for the given ‘units’. The mask algorithms are then applied. Current available mask algorithms allow one
to mask over banks tubes and pixels (‘BankTubePixel’), ranges of scattering angle in two theta (‘angle’),

9

and the ‘MedianDetectorTest’ available in Mantid. If the ‘normalizedcalibration’ keyword is set to True,
then the vanadium calibration file will be normalized to fluctuate about a value of one. Please note that the
order of masking will affect the resulting mask. We suggest masking detectors using the MaskBTP
algorithm AFTER other algorithms are called.

Required input
There is no required input in the calibration and mask section. With no input a calibration/mask file will
not be used in the reduction of data. If you would like to have the data masked and calibrated appropriately,
then you must set the “processedfilename” keyword to indicate which calibration/mask file should be used
in the reduction of the data. When no calibration/mask file is applied, then the solid angle correction will
not be included in the reduced data.

The <scan> section
The scan section allows one to set details of the data reduction process. Each scan element will describe
one distinct set of commands for the runs listed by the runs keyword. Lines of this section may be long if
all of the keywords are set to their non-default values. Three scan types are available for a scan. These are
single (default), step, and sweep. The use of these scan types is illustrated in the examples listed in
Appendix 2.

• Single mode will combine all runs in a single data reduction.
• Step mode will reduce each individual run of the runs listed.
• Sweep mode will combine all of the runs together and separate and reduce the combined dataset

according to the independent variable and its range chosen.

Required input
There is no required input in the data section. However, without any input, no data will be reduced.

2. Evaluation of the data reduction routines
The data reduction routines can be run from within a Python terminal or from a Linux command line.

Evaluation within a Python terminal of an analysis Linux machine

Set-up
In order to access correct Mantid directories, one must add a path line to their .bashrc file. This typically
only needs to be done once.

• Open a text editor (Applications -> Accessories -> editor of your choice) and open your .bashrc file.
This file is located in the directory /SNS/users/youruserid, where youruserid is your user id.

• Add the following text at the end of the .bashrc file:
o export PYTHONPATH=$PYTHONPATH:/opt/mantidnightly/bin/

• Save the file and close the text editor.

10

Execution

• Open a new command shell (right click on desktop and choose ‘Open in Terminal’ or Applications-
> System -> Terminal)

• Navigate to the shared directory of the IPTS directory you are working within:
o cd data/SNS/INSTRUMENT/IPTS-XXXX/shared

• The local contact will place any needed files (calibration files and python code) within this shared
directory.

• Open a text editor and generate the reduction.xml file. Save this file within the shared directory.
• Open a python terminal from the shell. The terminal ipython has been working well: type

ipython in the command shell.
• Run the reduction code within the python shell: run -i dgsreductionmantid

reduction.xml , where reduction.xml is your reduction xml filename.
• If files are not being accessed properly, then one may need to tell python to add the appropriate

subdirectories to the path using the config.appendDataSearchDir command e.g.
o from mantid import *

o config.appendDataSearchDir('/SNS/SEQ/shared/2012_A/V_files')

Evaluation within a Linux shell of an analysis Linux machine

Set-up
In order to access correct Mantid directories, one must add a path line to their .bashrc file. This typically
only needs to be done once.

• Open a text editor (Applications -> Accessories -> editor of your choice) and open your .bashrc file.
This file is located in the directory /SNS/users/youruserid, where youruserid is your user id.

• Add the following text at the end of the .bashrc file:
o export PYTHONPATH=$PYTHONPATH:/opt/mantidnightly/bin/

• NOTE: mantidnightly is updated nightly. If code does not run properly, one may need to use the
latest full release of mantid which is set instead with

o export PYTHONPATH=$PYTHONPATH:/opt/Mantid/bin/

• Save the file and close the text editor.

Execution
• Open a new command shell (right click on desktop and choose ‘Open in Terminal’ or Applications-

> System -> Terminal)
• Navigate to the shared directory of the IPTS directory you are working within:

o cd data/SNS/INSTRUMENT/IPTS-XXXX/shared

• The local contact will place any needed files (calibration files and python code) within this shared
directory.

• Open a text editor and generate the reduction.xml file. Save this file within the shared directory.

11

• Run the reduction code from the Linux sell by typing at the command line:
o python dgsreductionmantid.py reduction.xml.

3. Available output files
Several output files available can be generated by the reduction routines. These files are chosen by setting
the save keyword in the data section. We describe here the available output and references to the formatting
of these files.

The summary file
The summary file is a text file which is created during the course of data reduction. It contains a description
in prose of what was done during the data reduction process. If the vanadium calibration file was also
generated during the data reduction process, then this information is also included in the summary text file.
There are some options as to how summary files are named (please see friendlyname and friendlynamelogs
keywords descriptions), but they always contain the text _summary.txt. Summary files for data processed
using step or sweep mode are cumulative, that is, the summary file is saved for each individual reduced data
file, but it gets appended to as one traverses each of the runs being reduced. The summary file is saved in
the firendlyname subdirectory. The following is an example of a summary file.

-----------VANADIUM CALIBRATION AND MASKING-----------
Calibration loaded from
/SNS/users/5us/mantidscripts/v1/test1/vanadium21106_yesmediantest5_normcalib.nx5
-----------DATA REDUCTION-----------------------------
Loaded data run from /SNSlocal/ARCS/IPTS-5368/0/22663/NeXus/ARCS_22663_event.nxs
Incident energy is calculated from monitor data.
Ei (sum of monitors) = 90.4334027692 meV, t0 = 19.0718124122 microseconds
No time-independent background subtraction performed.
Data normalized by proton charge (555.970871253 micro-Ah)
Data corrected for He3 Tube Efficiency.
ki/kf factor has been applied to the data.
Data binned with emin=-86.5, emax=86.5, ebin=1.0meV.
Data converted to differential cross section by dividing by the energy bin width.
Data have been normalized and masked by the calibration file.
No goniometer set.
Data have been saved as a .nxspe file, FILENAME=TiO2_90meV_400C/ARCS22663_TiO2_90meV_400C.nxspe

The vanadium calibration and mask output file

If within the calibration and masking section, the file corresponding to the processedfilename keyword
exists, then the data reduction routine will simply read this file. If it does not exist, then the data reduction
routine will generate this file based upon the other key values set in this section. The calibration file is a
Nexus file. The Nexus file is saved using the SaveNexus command in Mantid
(http://www.mantidproject.org/SaveNexus). The vanadium calibration file can be loaded and viewed using
the MantidPlot application.

The nxspe file
One of the file types available for writing the reduced data to is an .nxspe file. The .nxspe file is saved
using the SaveNXPSE command in Mantid (http://www.mantidproject.org/SaveNXSPE). The values of
fixed, psi, ki_over_kf_scaling, and detector information (as requested by the SaveNXSPE command) are
included with this file. The nxspe file can be read using DAVE-Mslice software.

http://www.mantidproject.org/SaveNexus�
http://www.mantidproject.org/SaveNXSPE�

12

The nxs file
One of the file types available for writing the reduced data to is a .nxs file. This is a NeXus file type that is
saved using the SaveNexus command in Mantid (http://www.mantidproject.org/SaveNexus). These data
can be loaded and visualized using the MantidPlot software application. The complete history of the data
reduction is also included in this file. One can use this with MantidPlot to generate additional data
reduction scripts in MantidPlot.

The spe file
One of the file types available for writing the reduced data to is a .spe file. This is a text file which
describes the scattering intensity and error as a function of energy transfer and detector position. This
filetype is used with Mslice, DAVE-Mslice, and in generation of Horace files.

The phx file
One of the file types available for writing the reduced data to is a .phx file. This is a text file which
describes the detector positions. This filetype is used along with the .spe file in Mslice, and DAVE-Mslice.

The par file
One of the file types available for writing the reduced data to is a .par file. Par files are used in generation
of Horace files.

The iofe file
The iofe file is a text file of Inensity as a function of energy transfer generated directly after the data are
reduced. The data are integrated over all wave vector transfer, q, values. The data are currently NOT
accurately integrated. This is due to issues with SQW files in Mantid. Please see Appendix 4.

The iofq file
The iofq file is a text file of Intensity as a function of wave vector transfer generated directly after the data
are reduced. The data are integrated over all energy transfer values. The data are currently NOT accurately
integrated. This is due to issues with SQW files in Mantid. Please see Appendix 4.

The mdnxs file
The mdnxs file is a nexus file which includes the vector orientation of the crystal. This file type can be
loaded into Mantid and merged with other similar files for navigating a multi-dimensional workspace of
data.

4. Single crystal details and capabilities
The single crystal data file of choice currently is the .nxspe, and phx and spe files. These files can be
visualized using DAVE-Mslice (http://www.ncnr.nist.gov/dave/)and Horace
(http://horace.isis.rl.ac.uk/Main_Page) respectively. No further generation of files is needed to visualize
data in DAVE-Mslice beyond the creation of the .nxspe files. One must generate appropriate .SQW files
from the .spe and .phx files to use Horace. Typical single crystal measurements are made by rotating the
crystal through multiple angles with all other parameters fixed. To reduce these data, one may use either

http://www.mantidproject.org/SaveNexus�

13

step, sweep, or single for the scantype. Note that step mode does not average multiple files together, and
sweep mode does not yet work when the motor is held in position for an entire measurement. One can read
the motor angle directly from the motor logs, or one can set this angle to a default value. Up to 6
goniometer angles can be given. The goniometer angles are set using the SetGoniometer function in
Mantid. The keywords available for setting the goniometer are goniometermotor, goniometermotoroffset,
goniometermotordirection, goniometermotoraxis. Often the XXXdefault.py instrument default file will
contain default information for the goniometermotoraxis and goniometermotordirection. If no offset and no
motor name are listed, than no goniometer will be set. If no motor name is listed, and the number of
elements of offset, direction and axis are the same, then those values will be set for the goniometer. If the
number of elements of motor, direction, and axis are all >= 1 and all equal, then the angle set for the
goniometer is the sum of the offset angle listed and the angle value in the motor log. Further details
regarding the motor keywords are listed in Appendix 1 and in the example files.

The multi-dimensional workspace option within Mantid can now be used with these reduction routines.
One must choose ‘mdnxs’ for the save file type. One must also input either the UB matrix or the lattice
parameters and dave-mslice orientation vectors. This is done with either the ‘lattice’ or ‘ub’ keywords as
described in Appendix 1.

5. Binning
There are two choices one must make when binning (i.e. histogramming) data. We describe these options
and their consequences here

Energy binning
Energy bins are set from emin to emax with a step size of ebin. The emin value is the minimum energy of
the lowest energy bin, the emax value is the maximum energy of the highest energy bin, and ebin is the
width of each individual energy bin. For example, emin=’-10.5’ emax=’10.5’ ebin=’1’ would generate
histrogramed data at energy transfer values of -10, -9, -8, …,0,…8,9,10 meV. Figure 1 illustrates how the
binning is performed.

The default values for emin, emax and ebin are based upon the incident energy, Ei, and are respectively
emin = -0.5*Ei, emax=Ei, ebin = .015Ei.

Figure 1 Illustration of how energy binning is performed within the reduction
software. Returned energy values are the bin centers.

14

Detector binning
Detector binning refers to how one may average over neighboring pixels in detector space during the data
reduction. Two types of binning are allowed in the data reduction routine: powder binning and position
binning. Please note that the overall intensity scale will change when using different types of binning.

Powder binning
Powder binning averages over common values of 2theta in detector space. This type of binning
dramatically reduces output file size for nxspe, spe and phx files. This type of binning is used when
grouping=’powder’ is set within the defaults or scan sections of the input xml file. There is a default value
of the binning in two-theta detector space. One may adjust this parameter by using the powderanglestep
keyword. The intensity scale for powder binning is different than that used for position binning. The
intensity scale for powder binning does not change as one adjusts the powderanglestep parameter.

Position binning
Position binning averages over neighboring pixels vertically and horizontally for a given detector pack.
Currently this type of binning is used for 8-pack detector style instruments. This type of binning can reduce
the output file size by reducing the number of effective detectors. One needs to use the grouping keyword
to choose a grouping file. The keyvalue for this keyword refers to the type of grouping. For example
grouping=’2X1’ refers to a grouping file with 2 vertical pixels being averaged in each detector tube (from
128 pixels to 64 pixels), and no horizontal grouping. These standard grouping files for ‘8pack’ style
instruments are generated by the reduction routine. Grouping files are named using the convention
INSTRUMENT_YbyX_grouping.xml, where INSTRUMENT is the instrument name listed under the
instrument keyword and YbyX is the grouping in detector space written as “2X1”, “2X2”, “4X2”, etc. For
example ARCS_2X1_grouping.xml is a grouping file name. One can also generate a grouping file for more
complicated binning and then use the name of this grouping file as the keyvalue for the grouping keyword.
For ARCS, SEQUIOA, and CNCS, it is recommended to only use binning of 1X1, 2X1 or 4X1. 1X1 is the
default binning.

6. Capabilities under development

Masking based upon data files
Currently masking is only set based upon the vanadium calibration file. We would like to extend this to
include a union of this mask with a mask based upon the individual data files being reduced.

Other file types
Other file types being considered to be made available for writing include a text file for powder data as
S(Q,w).

Automatic or description of how to convert to absolute units

Automatic reduction of sweep mode for rotation motor (continuous rotation of sample).

15

Appendix 1 – keywords
Keywords and keyvalues are case sensitive. They are set as a space delimeted list within the defaults,
calibration, and scan sections of the xml file. They are set using a keyword=”keyvalue” sequence. The
quotation marks can be single or double quotes.

Keyvalues for Boolean keywords can be set by, yes, true, t, 1, y, tru, tr, or y (case insensitive). Everything
else is false.

calce – Set to true to fit the beam monitors for the incident energy. If the efixed keyvalue is set, then calce
will use that value as the starting point for the fitting. If efixed is not set, then calce will use the value that
was saved to the data file during the measurement as the starting point for the fitting. Set typically line by
line in the data section, in the defaults section, or in the instrument defaults file. Examples: calce=’true’
or calce=’false’.

datapath – Add this keyword and value to the scan element to add a particular path to search for data files.
Example: datapath = “/SNS/users/5us/tempfiles/newdata”.

ebin – Bin size in energy transfer in meV units for energy binning. Default value in the code is set to
choose ebin based upon 100 steps between emin and emax. Set typically line by line in the data section or
in the defaults section. Example, ebin=’0.5’.

efixed – The incident energy in meV to be used for the data reduction. If calce is set to false, then efixed
will be used without fitting the beam monitors for the incident energy. Set typically line by line in the data
section or in the defaults section. Exapmle: efixed=’12.7’.

emax – The maximum energy transfer in meV for the energy binning. The default value in the code is set
to choose emax as 1.0 times the incident energy. Set typically line by line in the data section or in the
defaults section. Example, emax=’10’.

emin –The minimum energy transfer in meV for the energy binning. The default value in the code is set to
choose emin as -0.5 times the incident energy. Set typically line by line in the data section or in the defaults
section. Example, emin=’-10’.

filterbadpulses – Setting this keyword to true will apply the filterbadpulses mantid function to the data.
Set typically in the defaults section. Examples: filterbadpulses=’False’ or filterbadpulses=’True’.

friendlyname – This will be the name of the generated subdirectory. This subdirectory will contain the
files that were generated as listed in the file keyvalues. The text for friendlyname must follow the
conventions for an operating systems directory names. If no friendlyname is given then no subdirectory is
created, and the files are stored in a subdirectory with the name of the instrument. This value is typically
set line by line in the data section. Example, friendlyname=’rotation_T50K’. Examples of the use of
friendlyname and friendlynamelogs are given in Appendix 2.

friendlynamelogs – Using this keyword allows one to include the mean value of a parameter of a logfile
as a portion of the filename. The mean value is included to two decimal places, and decimal points are

16

changed to the character ‘p’ for use with Horace. Multiple values can be listed for friendlynamelogs. For
example, one can include the rotation angle position of a motor, or the mean temperature of a measurement
or both. Any variable which is stored in the sample logs. Note that friendlynamelogs is often set in the
instrument defaults file. In order to override this default set friendlynamelogs=’’. Example,
friendlynamelogs=’CCR13VRot’. NOTE: if you use the motor angle in the filename and you add an offset,
then the filename will be written with the motor angle, not the offset+motorangle.

goniomtermotor– if multiple goniometer angles are used, then each of the keyvalues should be input in
the same order for the three individual keyword parameters. Set typically line by line in the data section or
in the defaults section. This is the name of the goniomtermotor which is to be read by the data reduction
routines. This will have the same name as that used by the DAS. Set typically line by line in the data
section or in the defaults section. Example, goniomtermotor=’CCR13VRot’.

goniometermotoraxis - These are the vector directions of the goniometer angles. Coordinate system is
the NeXus standard. The default vector is the vertical axis of the sample being the axis of rotation. This
would be input as goniometerangleaxis = YYYY. Multiple goniometerangleaxes can also be input as a
series. Set typically line by line in the data section or in the defaults section.

goniometermotordirection – This is the direction of positive rotation for a given goniometer motor. 1 is
used for counter clockwise rotation designated as positive. Example: goniometermotordirection =’1’, and
for example, for multiple goniometermotors, goniometermotordirection=’1,-1,1,1’.

goniometermotoroffset – This is an angle in degrees to be used for the offset angle for the goniometer
angle motor. This value is added to the value read from the goniometermotor value read from the data file.
If no offset is given, then the angle is read directly from the datafile. Set typically line by line in the data
section or in the defaults section. Example goniomtermotoroffset=’13.12’ or for multiple motor offsets
goniometermotoroffset=’[-44,-12,0]’.

grouping – This is the name of the grouping file to be used in the data reduction. Pre-generated grouping
files can be placed in the current directory within which one is running the reduction code. If no grouping
value is given, then the default value is 1X1. The VXH grouping corresponds to V pixels grouped
vertically and H pixels grouped horizontally. For instruments with “8pack” detectors V can have the values
of (1,2,4,8,16,32,64,128), and H can have the values (1,2,4,8). These ‘8pack’ style grouping files are
generated automatically by the reduction routines. It is not recommended to bin the data with V>4 or H>1.
The grouping can also be set to grouping=’powder’. In this case, a powder grouping of the detectors based
upon the anglestep value will be used. This keyword is set typically line by line in the data section or in the
defaults section. Example: grouping=’2X1’.

instrument - the instrument keyword should correspond to the instrument used for the measurements.
Current allowed values are ARCS, SEQUIOA, HYSPEC, and CNCS. The instrument keyword value is
case sensitive. The instrument keyword must be set in the defaults section. Example:
instrument=”SEQUIOA”

ipts – integer for the IPTS number. This is currently a bookkeeping device, and is not required. Set
typically line by line in the data section or in the defaults section. Example: ipts=’1234’.

17

kiokf – Set this to Boolean true to include this correction. Set typically line by line in the data section or in
the defaults section or in the instrument defaults. Example kiokf=’true’.

lattice – This keyword uses lattice parameters and the DAVE-Mslice style of U and V vectors to input the
crystal orientation into the reduction routines. It is suggested that one sets this value in the defaults section
of the xml file. This is currently used with ‘mdnxs’ file types. The key value is a set of comma delimited
numbers in the order “a,b,c,alpha,beta,gamma,ux,uy,uz,vx,vy,vz” where a,b,c,alpha, beta and gamma are
the real space lattice constants in angstroms and degrees. ux, uy, uz, vz, vy, and vz are the DAVE-Mslice
style U and V vectors.

logvalue – This keyword sets the logvalue to be used with sweep mode of data reduction. It is set to the
name of a log value in the sample logs. Examples: logvalue=’CCR12Rot’ and logvalue=’SensorD’.

logvaluebin – This keyword sets the binning of logvalues for sweep mode of datareduction. Example:
logvaluebin=’0.5’.

logvaluemax – This keyword sets the maximum value of binning for the logvalue used in sweep mode.
Example: logvaluemax=’125’.

logvaluemin - This keyword sets the minimum value of binning for the logvalue used in sweep mode.
Example: logvaluemin=’12’.

mask(algorithm=”angle”,twothetamin= X, twothetamax = Y) – keywords within the mask function
are case sensitive. The angle algorithm will mask between twothetamin and twothetamax. if no minimum
value is given, then the minimum value is set to 0. Set within the vanadium and calibration section. For
multiple angular ranges, algorithm should be called multiple times. Please note that the order of masking
will affect the resulting mask. We suggest masking detectors using the MaskBTP algorithm AFTER other
algorithms are called. The mask algorithms are currently only set in the calibration and mask section.
Example, <mask algorithm="angle" twothetamax="2.5"/>

mask(algorithm=”BankTubePixel”, bank = “”, tube = “”, pixel=””) - keywords within the mask
function are case sensitive. The BankTubePixel algorithm will mask ranges of banks tubes and pixels for
8pack detector instruments. The algorithm is to be called multiple times for multiple ranges of bank, tubes
and pixels. Please note that the order of masking will affect the resulting mask. We suggest masking
detectors using the MaskBTP algorithm AFTER other algorithms are called. Examples of these calls are
shown and commented in the example sections of this document. The mask algorithms are currently only
set in the calibration and mask section. Example, <mask algorithm="BankTubePixel" bank="59" tube="6"/>

mask(algorithm=”FindDetectorsOutsideLimits”) - This algorithm is used to eliminate detectors
outside of set limits. The default is currently set to mask any detectors with zero counts.

mask(algorithm=”MedianDetectorTest”, Significancetest=X, LowThreshold=Y, HighThreshold=Z)
- keywords within the mask function are case sensitive. The mediandetectortest calls the MantidPlot
algorithm of the same name. Please see Mantid help files for further details regarding this algorithm.
Please note that the order of masking will affect the resulting mask. We suggest masking detectors using

18

the MaskBTP algorithm AFTER other algorithms are called. The mask algorithms are currently only set in
the calibration and mask section. All keywords available to this algorithm are available for use in the
reduction routine. Example <mask algorithm="MedianDetectorTest" SignificanceTest="3.0"
LowThreshold="0.2" HighThreshold="5.0"/>

normalizedcalibration – True or False. When set to true, this will normalize the vanadium calibration
file to fluctuate about a value of one. This keyword is only set in the calibration and mask section.
Example normalizedcalibration=’true’.

powderanglestep – This is the step size in scattering angle with which the data are binned for powder
grouping. Example: powderanglestep=’0.15’.

processedfilename – This is the filename of the vanadium calibration file. The calibration file also
contains the mask information. If the processedfilename file already exists, then the vanadium information
will not be reprocessed, and the existing file will be used for calibration and masking. If the
processedfilename file does not exist in the current directory you are operating within, then the vanruns
vanadium file information will be processed. Example <processedfilename=’vanadium_15884_white.nxs’>

qstep – This is the bin size for q in inverse Angstroms for the binning of iofq text files. Example:
qstep=’0.01’.

runs – This is a listing of runs to combine together in a single reduction of data. If more than one run is
listed runs must be specified within quotation marks. multiple runs are specified in a comma delimeted list.
hyphenated pairs of run numbers are considered to be a series of consecutive runs. Example, runs=’19888-
19919, 19922’.

save – This is a listing of the file types one wants to use in saving the data. Currently supported file types
are .nxspe, spe, phx, summary, nxs, iofq, mdnxs, and iofe. Values are set in a comma delimited list.
Example, save= 'spe,summary,par,nxspe,nxs'.

scantype – The scantype keywords determines how runs are combined in a given call of the <scan>
reduction line. scantype can be, single, step, or sweep. single will combine all of the data together for a
single reduction. step will individually reduce all of the given runs listed. sweep will combine all of the
data together, and then bin them according to the log parameter chosen by the keywords logvalue,
logvaluemin, logvaluemax, and logvaluestep. Note that currently there must be more than one value in the
logvalue for sweep mode to work correctly (see Appendix 4). Example: scantype=’step’.

t0 – This is the time in microseconds that the peak in the neutron pulse takes to leave the moderator. If the
incident energy is fitted, than the value of t0 from this fit is used, regardless if t0 is set or not. The t0 value
is typically set line by line in the data section or in the defaults section. Example: t0=’12.75’.

tibg – This is a boolean keyword to set if one is using a time-independent-background subtraction or not.
This is typically set in the instrument default file or line by line in the data section. Example: tibg=’False’.

19

tibgstart – This is the starting time in microseconds to use for averaging and creation of the time-
independent background subtraction. The time-independent background is generated based upon the data
within runs. Exapmle: tibgstart = ‘1200’.

tibgstop - This is the stopping time in microseconds to use for averaging and creation of the time-
independent background subtraction. The time-independent background is generated based upon the data
within runs. Exapmle: tibgstpo = ‘1500’.

ub – This keyword uses the ub matrix to input the crystal orientation into the reduction routines. This is
currently used with ‘mdnxs’ file types. It is suggested that one sets this value in the defaults section of the
xml file. The key value is a set of comma delimited numbers in the order of first moving across the matrix
and then moving down to the next line and subsequently across. Example, if the ub matrix is given by

𝑢𝑏 =
0 1 1
2 3 5
8 13 21

then the keyword is set by ub=’0,1,1,2,3,5,8,13,21’.

units – This is the units of integration that are used in the creation of the vanadium calibration file.
Currently available units are DeltaE', 'DeltaE_inWavenumber', 'Energy', 'Energy_inWavenumber’,
'Momentum', 'MomentumTransfer', 'QSquared', 'TOF', 'Wavelength', and 'dspacing'. The units value is set
in the calibration and mask section. Example, units=’wavelength’.

vanmax – This is the maximum in the integration range used for generation of the vanadium calibration
file. If no vanmax value is given, than the maximum in the available range of integration is used. The
vanmax value is set in the calibration and mask section. Example, <vanmax>1.2</vanmax>.

vanmin - This is the minimum in the integration range used for generation of the vanadium calibration file.
If no vanmin value is given, than the minimum in the available range of integration is used. The vanmin
value is set in the calibration and mask section. Example, <vanmin>0.3</vanmin>.

vanpath – Set this keyword and value in the calibration section to add a particular path to find the location
of vanadium files. vanpath='/SNS/users/5us/mantidscripts/v3'.

vanruns – These are the numbers of the vanadium measurements to be used for generation of the
calibration and mask file. The vanruns value is set in the calibration and mask section. If more than one
run is listed runs must be specified within quotation marks. multiple runs are specified in a comma
delimeted list. hyphenated pairs of run numbers are considered to be a series of consecutive runs. The
vanruns value is set in the calibration and mask section. Example, <vanruns>15884-15885</vanruns>

Appendix 2 - Example files
The following example files illustrate how to set up the reduction text file. Note that line wrapping makes
the long lines of the data section appear on separate lines of this document.

20

---Example 1 --- Generation of a vanadium calibration file
For ARCS and SEQUIOA, the vanadium calibration file is generated via a T0 (no Fermi chopper) chopper
only measurement of a vanadium sample. Local contacts are the best resource for determining the
appropriate settings for generating of a calibration file.

<dgsreduction>
 <!-- DEFAULTS section -->
 <defaults
 Instrument="ARCS"
 filterbadpulses = "False"
 save='summary'
 />

 <!-- CALIBRATION AND MASKING section -->
 <calibration processedfilename = "vanadium_24510_white.nxs" units="wavelength"
normalizedcalibration = "True">
 <vanruns>24510</vanruns>
 <vanmin>0.35</vanmin>
 <vanmax>0.75</vanmax>

 <mask algorithm="BankTubePixel" pixel="1,2,3,4,5,6,7"/>
 <mask algorithm="BankTubePixel" pixel="120-128"/>
 <mask algorithm="angle" twothetamax="2.5"/>
 <mask algorithm="FindDetectorsOutsideLimits" />
 <mask algorithm="MedianDetectorTest" SignificanceTest="3.0" LowThreshold="0.4"
HighThreshold="1.6" ExcludeZeroesFromMedian="1" LevelsUp="1" CorrectForSolidAngle="1"/>
 </calibration>
</dgsreduction>

Once the nexus vanadium calibration file is obtained, it is a good idea to examine it using MantidPlot (Load
the nexus file, and use view-instrument option). One may need to mask additional detectors and iterate
through the process of generating a properly masked vanadium calibration file. If the processedfilename
already exists, than it will simply be opened and used for the reduction of data. So when one is iterating
through generation of the calibration file, one needs to delete or rename the previously generated vanadium
calibration file.

The remainder examples only show individual <scan/> lines assuming that the top of the file is identical to
the above example.

---Example 2 --- Simplest reduction line
<scan runs="24511" />

The run 24511 is reduced using all default values.

---Example 3 --- Saving a data file
<scan runs="24512" save='nxspe,summary'/>

The run 24512 is reduced and an nxspe and summary file are saved. All other values are default values.

---Example 4 --- friendlyname and friendlynamelogs.
<scan runs="24513" save='nxs,phx,spe,summary,par,garbage' friendlyname="diamond"
friendlynamelogs="EnergyRequest"/>

Scan 24513 is reduced, and several file types are saved. Note that unknown filetypes can be listed, but they
are just ignored. A friendlyname is used for the subdirectory within which the data are saved, and the log
values for EnergyRequest are included in the file names. If a friendlynamelogs value is listed which does
not exist, then it is ignored.

21

---Example 5 --- set the energy binning.
<scan runs="24515" emin="-10" emax="35" ebin="0.5" save='nxspe,summary'
friendlyname="diamond_bin1" friendlynamelogs=""/>

The incident energy is automatically set based upon a fit to monitor data (if set this way in default
parameters), but the energy binning is set from -10 to 35 meV in 0.5 meV steps. No friendlynamelogs
information is used.

---Example 6 --- Set the efixed value, but it is too far from true value.
<scan runs="24516" efixed="30" emin="-10.25" emax="22.25" ebin="0.5" save='nxspe,summary'
friendlyname="diamond_bin2" />

This efixed value is very far from the true value. A fit is performed, but it fails and issues a warning “No
peak found in data that satisfieds prominence criterion.”

---Example 7 --- Set the efixed value, and Ei fit works correctly.
<scan runs="24516" efixed="27" emin="-10.25" emax="22.25" ebin="0.5" save='nxspe,summary'
friendlyname="diamond_bin2" />

This sets the efixed value as the starting point for the incident energy fit, and successfully sets the incident
energy and T0 values after the fit.

---Example 8 --- Do not fit the incident energy or T0 value (calce=’false’).
<scan runs="24516" efixed="27" t0=’3.725’ calce='false' emin="-10.25" emax="22.25" ebin="0.5"
save='nxspe,summary' friendlyname="diamond_bin3" />

---Example 9 --- Combine and average two runs together.
<scan runs="24517,24532" save='nxspe,summary' friendlyname="diamond_bin5" />

---Example 10 --- Set grouping to powder mode and change powder binning.
<scan runs="24521" grouping='powder' powderanglestep=’0.1’ save='nxspe,summary'
friendlyname="diamond_bin6" />

powder binning file is 443 kB, and 1X1 file is 185 MB.

---Example 11 --- Multiple files to be reduced individually (step mode).
<scan runs="24511-24514" save='nxspe,summary' grouping='powder' powderanglestep="0.2"
friendlyname="diamond_bin8" scantype='step' friendlynamelogs =’run_number’/>

Scans are saved in powder mode in the diamond_bin8 directory with file names set by the run number.
Each individual scan is separately reduced. These scans are actually at different incident energies, and this
is automatically accounted for by the default parameters set. The command does not contain an efixed
value since the incident energy of these scans is varying

--- Example 12 --- Splitting up a series of runs by temperature (sweep mode).
<scan runs="23985-23989" save='nxs,nxspe,summary' grouping='powder' powderanglestep="0.2"
friendlyname="CrCl2_temptest1" scantype='sweep' logvalue="SensorD" logvaluemin="6"
logvaluemax="51" logvaluestep="5" friendlynamelogs='SensorD'/>

22

Temperature was varying throughout these runs. The data are all loaded together, combined, and then
separated according to SensorD values with a binning of 5 K between 5 and 51 K. The logvalue of SensorD
is used in the filenames.

--- Example 13 --- Several measurements separately reduced.

<scan runs="25131" save='nxspe,summary'/>
<scan runs="25132" save='nxspe,summary'/>
<scan runs="25133" save='nxspe,summary'/>
<scan runs="25134" save='nxspe,summary'/>
<scan runs="25135" save='nxspe,summary'/>

--- Example 14 --- single orientation of sample, directly fixing the motor angle.
<scan runs="25317" save='nxspe,summary' goniometermotoroffset='-46'/>

the offset for the default axis (set in the default files), is set to -46 degrees, no reading of the actual motor
angle is performed.

---Example 15 --- single orientation of sample, using logged motor angle
<scan runs="25131" save='nxspe,summary' friendlynamelogs='CCR12Rot' goniometermotor='CCR12Rot'/>

This will only work if there is a goniomtermotorffset, axis, and direction set in the defaults file or defaults
section. The goniomtermotor setting is read from the sample logs and used in writing the nxspe file, it is
also used in generating the fielnames.

---Example 16 --- single orientation, but adding an offset to the motor angle
<scan runs="25323" save='nxspe,summary' goniometermotor='CCR12Rot' goniometermotoroffset='-46'/>

Adds -46 to the actual goniometer angle from CCR12Rot Log and uses this in the .nxspe file. Also notes
this shfirt in the summary file. Only works is goniomtermotoraxis and direction are also set elsewhere.

---Example 17 --- Step mode with angles
<scan runs="25131-25135" save='nxspe,summary' goniometermotor='CCR12Rot'
friendlynamelogs='CCR12Rot' scantype='step'/>

Generates one file for each run number, saves them with the angle in the filename, the summary file gets
appended to as one moves through the file list.

---Example 18 --- Sweep mode with angles 1
<scan runs="25136-25140" save='nxspe,summary' goniometermotor='CCR12Rot'
friendlynamelogs='CCR12Rot' scantype='sweep'/>

does not work since no log values listed

---Example 19 --- Sweep mode with angles 2
<scan runs="25136-25140" save='nxspe,summary' logvalue='CCR12Rot' logvaluemin='-26.5'
logvaluemax='26.5' logvaluestep='1.0' goniometermotor='CCR12Rot' friendlynamelogs='CCR12Rot'
scantype='sweep'/>

23

Loads all data, combines it together, then trys to split it appart over the range listed. This will only work if
the motor was continuously moving and updataing the log file for these runs. If the motor was stationary
for each of the individual runs, then this will not work, please see Appendix 4.

---Example 20 --- Sweep mode with temperature
<scan runs="25792" efixed='80' t0='29.23' save='nxspe,summary' logvalue='SampleTemp'
logvaluemin='0.5' logvaluemax='110.5' logvaluestep='10.0' friendlynamelogs='SampleTemp'
scantype='sweep'/>

Makes a set of temperature delimited files, and uses the mean temperature within each of the temperature
bins to name the files.

Appendix 3 – The instrument default file
The instrument default file is a function building up a dictionary of keywords and their default values. The
file is saved in the /SNS/XXX/shared/ directory where XXX is the instrument name. It can also be saved in
the local directory one is running the reduction code from.

Example 1: arcsdefault.py
def instrumentparameters():

 globaldict = dict()
 #instrument items
 globaldict['instrument']='ARCS'
 globaldict['filterbadpulses'] = False

 #calibration and mask items
 globaldict['vanruns'] = None
 globaldict['units'] = 'TOF'
 globaldict['vanmin'] = None
 globaldict['vanmax'] = None
 globaldict['processedfilename'] = 'vanadium.nx5'
 globaldict['maskfilename'] = None
 globaldict['mask'] = [] #the mask parameters are stored as a list of dictionaries. (check this)
 globaldict['normalizedcalibration'] = False

 #data items
 globaldict['ipts'] = None #optional, need to make work for ISIS too.
 globaldict['runs'] = [] #returns a list of ints
 globaldict['efixed']= None #number double
 globaldict['t0'] = 0.0 #number double
 globaldict['calce'] = True
 globaldict['ei-mon1-spec'] = 1
 globaldict['ei-mon2-spec'] = 2
 globaldict['emin']=None #number double
 globaldict['emax']=None #number double
 globaldict['ebin']=None #number double
 globaldict['qstep']=None #number double
 globaldict['kiokf']=True #can only use boolean here, not 1 or 0.
 globaldict['tibg']=False
 globaldict['tibgstart']=None
 globaldict['tibgstop']= None
 globaldict['grouping']=None
 globaldict['powderanglestep'] = 0.5
 globaldict['goniometermotor']=None #script takes care of default situations.
 globaldict['goniometermotoroffset']=None
 globaldict['goniometermotoraxis']=["0,1,0"]
 globaldict['goniometermotordirection']=[1]
 globaldict['save']=[]
 globaldict['friendlyname']='ARCS'
 globaldict['friendlynamelogs'] = 'run_number' #will get the run_number from the logs, first run
number only.

 return globaldict

24

Example 2: hyspecdefault.py
import math

def instrumentparameters():

 globaldict = dict()

 #instrument items
 globaldict['instrument']='HYSPEC'
 globaldict['filterbadpulses'] = False

 #calibration and mask items
 globaldict['vanruns'] = None
 globaldict['units'] = 'TOF'
 globaldict['vanmin'] = None
 globaldict['vanmax'] = None
 globaldict['processedfilename'] = 'vanadium.nx5'
 globaldict['maskfilename'] = None
 globaldict['mask'] = [] #the mask parameters are stored as a list of dictionaries. (check this)
 globaldict['normalizedcalibration'] = False

 #data items
 globaldict['ipts'] = None #optional, need to make work for ISIS too.
 globaldict['runs'] = [] #returns a list of ints
 globaldict['efixed']= None #number double
 globaldict['t0'] = None #number double
 globaldict['calce'] = False
 globaldict['ei-mon1-spec'] = 1
 globaldict['ei-mon2-spec'] = 2
 globaldict['emin']=None #number double
 globaldict['emax']=None #number double
 globaldict['ebin']=None #number double
 globaldict['qstep']=None #number double
 globaldict['kiokf']=True #can only use boolean here, not 1 or 0.
 globaldict['tibg']=False
 globaldict['tibgstart']=None
 globaldict['tibgstop']= None
 globaldict['grouping']=None
 globaldict['powderanglestep'] = 0.5
 globaldict['goniometermotor']=None #script takes care of default situations.
 globaldict['goniometermotoroffset']=None
 globaldict['goniometermotoraxis']=["0,1,0"]
 globaldict['goniometermotordirection']=[1]
 globaldict['save']=[]
 globaldict['friendlyname']='HYS'
 globaldict['friendlynamelogs'] = 'run_number' #will get the run_number from the logs, first run
number only.

 return globaldict

def t0fromei(ei):
 return 1.0*(25.0 + 85.0 / (1+math.pow((ei/27.0),4.0)))

Example 3: sequoiadefault.py
def instrumentparameters():
 globaldict = dict()

 #instrument items
 globaldict['instrument']='SEQUOIA'
 globaldict['filterbadpulses'] = False

 #calibration and mask items
 globaldict['vanruns'] = None
 globaldict['units'] = 'TOF'
 globaldict['vanmin'] = None
 globaldict['vanmax'] = None
 globaldict['processedfilename'] = 'vanadium.nx5'
 globaldict['maskfilename'] = None
 globaldict['mask'] = [] #the mask parameters are stored as a list of dictionaries. (check this)
 globaldict['normalizedcalibration'] = False

25

 #data items
 globaldict['ipts'] = None #optional, need to make work for ISIS too.
 globaldict['runs'] = [] #returns a list of ints
 globaldict['efixed']= None #number double
 globaldict['t0'] = 0.0 #number double
 globaldict['calce'] = True
 globaldict['ei-mon1-spec'] = 1
 globaldict['ei-mon2-spec'] = 2
 globaldict['emin']=None #number double
 globaldict['emax']=None #number double
 globaldict['ebin']=None #number double
 globaldict['qstep']=None #number double
 globaldict['kiokf']=True #can only use boolean here, not 1 or 0.
 globaldict['tibg']=False
 globaldict['tibgstart']=None
 globaldict['tibgstop']= None
 globaldict['grouping']=None
 globaldict['powderanglestep'] = 0.5
 globaldict['goniometermotor']=None #script takes care of default situations.
 globaldict['goniometermotoroffset']=None
 globaldict['goniometermotoraxis']=["0,1,0"]
 globaldict['goniometermotordirection']=[1]
 globaldict['save']=[]
 globaldict['friendlyname']='SEQ'
 globaldict['friendlynamelogs'] = 'run_number' #will get the run_number from the logs, first run
number only.

 return globaldict

Example4: cncsdefault.py

import math

def instrumentparameters():

 globaldict = dict()

 #instrument items
 globaldict['instrument']='CNCS'
 globaldict['filterbadpulses'] = False

 #calibration and mask items
 globaldict['vanruns'] = None
 globaldict['units'] = 'TOF'
 globaldict['vanmin'] = None
 globaldict['vanmax'] = None
 globaldict['processedfilename'] = 'vanadium.nx5'
 globaldict['maskfilename'] = None
 globaldict['mask'] = [] #the mask parameters are stored as a list of dictionaries. (check this)
 globaldict['normalizedcalibration'] = False

 #data items
 globaldict['ipts'] = None #optional, need to make work for ISIS too.
 globaldict['runs'] = [] #returns a list of ints
 globaldict['efixed']= None #number double
 globaldict['t0'] = None #number double
 globaldict['calce'] = False
 globaldict['ei-mon1-spec'] = 1
 globaldict['ei-mon2-spec'] = 2
 globaldict['emin']=None #number double
 globaldict['emax']=None #number double
 globaldict['ebin']=None #number double
 globaldict['qstep']=None #number double
 globaldict['kiokf']=True #can only use boolean here, not 1 or 0.
 globaldict['tibg']=False
 globaldict['tibgstart']=None
 globaldict['tibgstop']= None
 globaldict['grouping']=None
 globaldict['powderanglestep'] = 0.25
 globaldict['goniometermotor']=None #script takes care of default situations.
 globaldict['goniometermotoroffset']=None
 globaldict['goniometermotoraxis']=["0,1,0"]
 globaldict['goniometermotordirection']=[1]
 globaldict['save']=[]

26

 globaldict['friendlyname']='CNCS'
 globaldict['friendlynamelogs'] = 'run_number' #will get the run_number from the logs, first run
number only.

 return globaldict

def t0fromei(ei):
 return 1000.0*(-0.1982*math.pow(1.0+ei,-0.84098))

Appendix 4 – Known bugs and issues.
• Use of the scan=’sweep’ for a series of runs at different scattering angles when the rotation motor is

stationary for each run. This does not work because only a single motor angle is stored in the log
files. Mantid is not able to separate the file into multiple steps, if there is only a single value in the
log file.

• iofq and iofe data output are not accurately being integrated by Mantid. This is because these
routines integrate the SofQW output to generate the integrated scattering intensity. This output
does not currently distinquish between zero detector counts and values of Q and energy transfer
outside of the kinematicly measured region.

	Introduction and Overview
	Updates in V 5.0
	The mantid user’s .bashrc file
	Grouping
	Orientation vectors/matrices

	1. The reduction.xml file
	Formatting
	The <defaults> section
	Required input
	Optional input

	The <calibration> section
	Required input

	The <scan> section
	Required input

	2. Evaluation of the data reduction routines
	Evaluation within a Python terminal of an analysis Linux machine
	Set-up
	Execution

	Evaluation within a Linux shell of an analysis Linux machine
	Set-up
	Execution

	3. Available output files
	The summary file
	The vanadium calibration and mask output file
	The nxspe file
	The nxs file
	The spe file
	The phx file
	The par file
	The iofe file
	The iofq file
	The mdnxs file

	4. Single crystal details and capabilities
	5. Binning
	Energy binning
	Detector binning
	Powder binning
	Position binning

	6. Capabilities under development
	Masking based upon data files
	Other file types

	Appendix 1 – keywords
	Appendix 2 - Example files
	---Example 1 --- Generation of a vanadium calibration file
	---Example 2 --- Simplest reduction line
	---Example 3 --- Saving a data file
	---Example 4 --- friendlyname and friendlynamelogs.
	---Example 5 --- set the energy binning.
	---Example 6 --- Set the efixed value, but it is too far from true value.
	---Example 7 --- Set the efixed value, and Ei fit works correctly.
	---Example 8 --- Do not fit the incident energy or T0 value (calce=’false’).
	---Example 9 --- Combine and average two runs together.
	---Example 10 --- Set grouping to powder mode and change powder binning.
	---Example 11 --- Multiple files to be reduced individually (step mode).
	--- Example 12 --- Splitting up a series of runs by temperature (sweep mode).
	--- Example 14 --- single orientation of sample, directly fixing the motor angle.
	---Example 15 --- single orientation of sample, using logged motor angle
	---Example 16 --- single orientation, but adding an offset to the motor angle
	---Example 17 --- Step mode with angles
	---Example 18 --- Sweep mode with angles 1
	---Example 19 --- Sweep mode with angles 2
	---Example 20 --- Sweep mode with temperature

	Appendix 3 – The instrument default file
	Example 1: arcsdefault.py
	Example 2: hyspecdefault.py
	Example 3: sequoiadefault.py
	Example4: cncsdefault.py

	Appendix 4 – Known bugs and issues.

